Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The historical and contemporary loss of large-bodied frugivores has disrupted many plant-disperser mutualisms, with potentially profound consequences for plants. Although several aspects of seed dispersal by megafrugivores have already been examined, the role of these species in promoting seed-mediated gene flow has remained unexplored. We evaluated the role of the Amazonian tapir (Tapirus terrestris), the largest Neotropical frugivore, in shaping plant genetic structure through seed-mediated gene flow. We used microsatellites to analyze the genetic patterns of Syagrus romanzoffiana seedlings recruited in tapir latrines and around conspecific adult palms, the two sites where seeds and seedlings are most frequently found in this species. While the genetic diversity of seedlings was rather similar in both sites, the kinship structure was substantially weaker in latrines. Most seedlings recruited around adult palms were half- or full-sibs originating from those adults. In contrast, seedlings recruited in latrines came from several (>5, on average) contributing mothers other than the nearest adult (95%) and were mostly non-sibs (72%). Kinship patterns indicated that tapir-mediated dispersal promotes the admixture of genotypes across space. Also, our results suggested that genetic diversity and the number of contributing mothers in latrines increase with the number of fruiting adults visited by tapirs before defecating and with the accumulation of feces over time. We provide evidence of the relevance of tapirs in mobilizing maternal progenies (and genotypes) across the landscape and recruiting clusters of unrelated seedlings. This study suggests a key role for plant–megafrugivore interactions in seed-mediated gene flow and emphasizes the importance of preserving such mutualisms. © 2016 The Association for Tropical Biology and Conservation

Registro:

Documento: Artículo
Título:The key role of the largest extant Neotropical frugivore (Tapirus terrestris) in promoting admixture of plant genotypes across the landscape
Autor:Giombini, M.I.; Bravo, S.P.; Tosto, D.S.
Filiación:IEGEBA – Instituto de Ecología Genética y Evolución de Buenos Aires, UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 4° piso, Pabellón II, Ciudad Universitaria (C1428EHA), Ciudad Autónoma de Buenos Aires, Argentina
Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria INTA-Castelar, Dr. Nicolás Repetto y De los Reseros s/N (B1686IGC), Hurlingham, Buenos Aires, Argentina
Palabras clave:defaunation; Iguazú National Park; kinship analysis; megafauna; plant-disperser mutualisms; seed dispersal; seed-mediated gene flow; Syagrus romanzoffiana; community composition; evergreen tree; frugivory; gene flow; genetic analysis; genetic structure; genotype; habitat loss; kinship; landscape ecology; mutualism; recruitment (population dynamics); seed dispersal; ungulate; Argentina; Iguazu National Park; Misiones [Argentina]; Syagrus romanzoffiana; Tapiridae; Tapirus terrestris
Año:2016
Volumen:48
Número:4
Página de inicio:499
Página de fin:508
DOI: http://dx.doi.org/10.1111/btp.12328
Título revista:Biotropica
Título revista abreviado:Biotropica
ISSN:00063606
CODEN:BTROA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00063606_v48_n4_p499_Giombini

Referencias:

  • Ashley, M.V., Plant parentage, pollination, and dispersal: How DNA microsatellites have altered the landscape (2010) CRC. Crit. Rev. Plant Sci., 29, pp. 148-161. , –
  • Barat, A., Bravo, S.P., Chandra, S., Correa, A.S., Giombini, M.I., Guedes, R.N.C., Hualei, M., Vinson, C.C., Permanent genetic resources added to molecular ecology resources database 1 June 2012 – 31 July 2012 (2012) Mol. Ecol. Resour., 12, pp. 1196-1197. , –
  • Barcelos, A.R., Bobrowiec, P.E.D., Sanaiotti, T.M., Gribel, R., Seed germination from lowland tapir (Tapirus terrestris) fecal samples collected during the dry season in the northern Brazilian Amazon (2013) Integr. Zool., 8, pp. 63-73. , –
  • Bascompte, J., Jordano, P., Plant-animal mutualistic networks: The architecture of biodiversity (2007) Annu. Rev. Ecol. Evol. Syst., 38, pp. 567-593. , –
  • Blouin, M.S., DNA-based methods for pedigree reconstruction and kinship analysis in natural populations (2003) Trends Ecol. Evol., 18, pp. 503-511. , –
  • Bravo, S.P., The impact of seed dispersal by black and gold howler monkeys on forest regeneration (2012) Ecol. Res., 27, pp. 311-321. , –
  • Bueno, R.S., Guevara, R., Ribeiro, M.C., Culot, L., Bufalo, F.S., Galetti, M., Functional redundancy and complementarities of seed dispersal by the last neotropical megafrugivores (2013) PLoS ONE, 8
  • Campos-Arceiz, A., Blake, S., Megagardeners of the forest – The role of elephants in seed dispersal (2011) Acta Oecologica, 37, pp. 542-553. , –
  • Campos-Arceiz, A., Traeholt, C., Jaffar, R., Santamaria, L., Corlett, R.T., Asian tapirs are no elephants when it comes to seed dispersal (2012) Biotropica, 44, pp. 220-227. , –
  • Carvajal-Rodriguez, A., de Uña-Alvarez, J., Assessing significance in high-throughput experiments by sequential goodness of fit and q-value estimation (2011) PLoS ONE, 6
  • Clauss, M., Lang-Deuerling, S., Müller, D.W.H., Kienzle, E., Steuer, P., Hummel, J., Retention of fluid and particles in captive tapirs (Tapirus sp.) (2010) Comp. Biochem. Physiol. A Mol. Integr. Physiol., 157, pp. 95-101. , –
  • Collevatti, R.G., Grattapaglia, D., Hay, J.D., Evidences for multiple maternal lineages of Caryocar brasiliense populations in the Brazilian Cerrado based on the analysis of chloroplast DNA sequences and microsatellite haplotype variation (2003) Mol. Ecol., 12, pp. 105-115. , –
  • Corlett, R.T., The shifted baseline: Prehistoric defaunation in the tropics and its consequences for biodiversity conservation (2013) Biol. Conserv., 163, pp. 13-21. , –
  • Crawford, K.M., Whitney, K.D., Population genetic diversity influences colonization success (2010) Mol. Ecol., 19, pp. 1253-1263. , –
  • Di Bitetti, M.S., Placci, L.G., Dietz, L.A., (2003) A biodiversity vision for the Upper Paraná Atlantic Forest eco-region: Designing a biodiversity conservation landscape and setting priorities for conservation action, , World Wildlife Fund, Washington, DC
  • Dinerstein, E., Wemmer, C.M., Fruits rhinoceros eat: Dispersal of Trewia nudiflora (Euphorbiaceae) in lowland Nepal (1988) Ecology, 69, pp. 1768-1774. , –
  • Dirzo, R., Young, H.S., Galetti, M., Ceballos, G., Defaunation in the Anthropocene (2014) Science, 345, pp. 401-406. , –
  • Donatti, C.I., Galetti, M., Pizo, M.A., Guimarães, P.R., Jr., Jordano, P., Living in the land of Ghosts: Fruit traits and the importance of large mammals as seed dispersers in the Pantanal, Brazil (2007) Seed dispersal: Theory and its application in a changing world, pp. 104-123. , In, A. J. Dennis, R. Green, E. W. Schupp, D. Wescott, (Eds.)., –, Commowealth Agricultural Bureau International, Wallingford, UK
  • Fragoso, J.M.V., Tapir-generated seed shadows: Scale-dependent patchiness in the Amazon Rain Forest (1997) J. Ecol., 85, pp. 519-529. , –
  • Fragoso, J.M.V., Huffman, J.M., Seed-dispersal and seedling recruitment patterns by the last Neotropical megafaunal element in Amazonia, the tapir (2000) J. Trop. Ecol., 16, pp. 369-385. , –
  • Fragoso, J.M.V., Silvius, K.M., Correa, J.A., Long-distance seed dispersal by tapirs increases seed survival and aggregates tropical trees (2003) Ecology, 84, pp. 1998-2006. , –
  • Freire, C.C., Closel, M.B., Hasui, E., Ramos, F.N., Reproductive phenology, seed dispersal and seed predation in Syagrus romanzoffiana in a highly fragmented landscape (2013) Ann. Bot. Fenn., 50, pp. 220-228. , –
  • Furnier, G.R., Knowles, P., Clyde, M.A., Dancik, B.P., Effects of avian seed dispersal on the genetic structure of whitebark pine populations (1987) Evolution, 41, pp. 607-612. , –
  • Galetti, M., Guevara, R., Côrtes, M., Fadini, R., Von Matter, S., Leite, A., Labecca, F., Jordano, P., Functional extinction of birds drives rapid evolutionary changes in seed size (2013) Science, 340, pp. 1086-1090. , –
  • Galetti, M., Keuroghlian, A., Hanada, L., Morato, M.I., Frugivory and seed dispersal by the lowland tapir (Tapirus terrestris) in Southeast Brazil (2001) Biotropica, 33, pp. 723-726. , –
  • Galetti, M., Paschoal, M., Pedroni, F., Predation on palm nuts (Syagrus romanzoffiana) by squirrels (Sciurus ingrami) in south-east Brazil (1992) J. Trop. Ecol., 8, pp. 121-123. , –
  • García, C., Grivet, D., Molecular insights into seed dispersal mutualisms driving plant population recruitment (2011) Acta Oecologica, 37, pp. 632-640. , –
  • García, C., Jordano, P., Arroyo, J.M., Godoy, J.A., Maternal genetic correlations in the seed rain: Effects of frugivore activity in heterogeneous landscapes (2009) J. Ecol., 97, pp. 1424-1435. , –
  • Genini, J., Galetti, M., Morellato, L.P.C., Fruiting phenology of palms and trees in an Atlantic rainforest land-bridge island. Flora – Morphol (2009) Distrib. Funct. Ecol. Plants, 204, pp. 131-145. , –
  • Giombini, M.I., Bravo, S.P., Martínez, M.F., Seed dispersal of the palm Syagrus romanzoffiana by tapirs in the semi-deciduous Atlantic Forest of Argentina (2009) Biotropica, 41, pp. 408-413. , –
  • Godoy, J.A., Jordano, P., Seed dispersal by animals: Exact identification of source trees with endocarp DNA microsatellites (2001) Mol. Ecol., 10, pp. 2275-2283. , –
  • Grivet, D., Robledo-Arnuncio, J.J., Smouse, P.E., Sork, V.L., Relative contribution of contemporary pollen and seed dispersal to the effective parental size of seedling population of California valley oak (Quercus lobata, Née) (2009) Mol. Ecol., 18, pp. 3967-3979. , –
  • Grivet, D., Smouse, P.E., Sork, V.L., A novel approach to an old problem: Tracking dispersed seeds (2005) Mol. Ecol., 14, pp. 3585-3595. , –
  • Guimarães, P.R., Galetti, M., Jordano, P., Seed dispersal anachronisms: Rethinking the fruits extinct megafauna ate (2008) PLoS ONE, 3
  • Hamrick, J.L., Trapnell, D.W., Using population genetic analyses to understand seed dispersal patterns (2011) Acta Oecologica, 37, pp. 641-649. , –
  • Hansen, D.M., Galetti, M., The forgotten megafauna (2009) Science, 324, pp. 42-43. , –
  • Hardesty, B.D., Hubbell, S.P., Bermingham, E., Genetic evidence of frequent long-distance recruitment in a vertebrate-dispersed tree (2006) Ecol. Lett., 9, pp. 516-525. , –
  • Hardy, O.J., Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers (2003) Mol. Ecol., 12, pp. 1577-1588. , –
  • Hardy, O.J., Vekemans, X., SPAGeDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels (2002) Mol. Ecol. Notes, 22, pp. 618-620. , –
  • Harrison, R.D., Tan, S., Plotkin, J.B., Slik, F., Detto, M., Brenes, T., Itoh, A., Davies, S.J., Consequences of defaunation for a tropical tree community (2013) Ecol. Lett., 16, pp. 687-694. , –
  • Hedgecock, D., Eichert, W., (1999) WHICHPARENTS (version 1.0): a windows application for determining the most likely parents of offspring using multilocus genotype data, , http://www.bml.ucdavis.edu/whichparents.html, Computer software distributed from
  • Henderson, A., Galeano, G., Bernal, R., (1995) Field guide to the palms of the Americas, , Princeton University Press, Princeton, NJ
  • Howe, H.F., Scatter-and clump-dispersal and seedling demography: Hypothesis and implications (1989) Oecologia, 79, pp. 417-426. , –
  • Howe, H.F., Smallwood, J., Ecology of seed dispersal (1982) Annu. Rev. Ecol. Syst., 13, pp. 201-228. , –
  • Janzen, D.H., Martin, P.S., Neotropical anachronisms: The fruits the gomphotheres ate (1982) Science, 215, pp. 19-27. , –
  • Jones, O.R., Wang, J., COLONY: A program for parentage and sibship inference from multilocus genotype data (2010) Mol. Ecol. Resour., 10, pp. 551-555. , –
  • Jordano, P., Pollen, seeds and genes: The movement ecology of plants (2010) Heredity, 105, pp. 329-330. , –
  • Jordano, P., García, C., Godoy, J.A., García-Castaño, J.L., Differential contribution of frugivores to complex seed dispersal patterns (2007) Proc. Natl Acad. Sci. USA, 104, pp. 3278-3282. , –
  • Kalinowski, S.T., Wagner, A.P., Taper, M.L., ML-RELATE: A computer program for maximum likelihood estimation of relatedness and relationship (2006) Mol. Ecol. Notes, 6, pp. 576-579. , –
  • Karubian, J., Sork, V.L., Roorda, T., Durães, R., Smith, T.B., Destination-based seed dispersal homogenizes genetic structure of a tropical palm (2010) Mol. Ecol., 19, pp. 1745-1753. , –
  • Keuroghlian, A., Eaton, D.P., Fruit availability and peccary frugivory in an isolated Atlantic Forest fragment: Effects on peccary ranging behavior and habitat use (2008) Biotropica, 40, pp. 62-70. , –
  • Keuroghlian, A., Eaton, D.P., Removal of palm fruits and ecosystem engineering in palm stands by white-lipped peccaries (Tayassu pecari) and other frugivores in an isolated Atlantic Forest fragment (2009) Biodivers. Conserv., 18, pp. 1733-1750. , –
  • Kurten, E.L., Cascading effects of contemporaneous defaunation on tropical forest communities (2013) Biol. Conserv., 163, pp. 22-32. , –
  • Lessa, E.P., Fariña, R.A., Reassessment of extinction patterns among the late Pleistocene mammals of South America (1996) Palaeontology, 39, pp. 651-662. , –
  • Loiselle, B.A., Sork, V.L., Nason, J., Graham, C., Spatial genetic structure of a tropical understorey shrub, Psychotria officinalis (Rubiaceae) (1995) Am. J. Bot., 82, pp. 1420-1425. , –
  • Loveless, M.D., Hamrick, J.L., Ecological determinants of genetic structure in plant populations (1984) Annu. Rev. Ecol. Syst., 15, pp. 65-95. , –
  • Markl, J.S., Schleuning, M., Forget, P.M., Jordano, P., Lambert, J.E., Traveset, A., Wright, S.J., Böhning-Gaese, K., Meta-analysis of the effects of human disturbance on seed dispersal by animals (2012) Conserv. Biol., 26, pp. 1072-1081. , –
  • McConkey, K.R., Prasad, S., Corlett, R.T., Campos-arceiz, A., Brodie, J.F., Rogers, H., Santamaria, L., Seed dispersal in changing landscapes (2012) Biol. Conserv., 146, pp. 1-13. , –
  • Meagher, T.R., Thompson, E., Analysis of parentage for naturally established seedlings of Chamaelirium luteum (Liliaceae) (1987) Ecology, 68, pp. 803-812. , –
  • Medici, E.P., (2010) Assesing the viability of lowland tapir populations in a fragmented landscape, , PhD Dissertation., University of Kent, Canterbury, UK
  • Nathan, R., Schurr, F.M., Spiegel, O., Steinitz, O., Trakhtenbrot, A., Tsoar, A., Mechanisms of long-distance seed dispersal (2008) Trends Ecol. Evol., 23, pp. 638-647. , –
  • Nazareno, A.G., Dos Reis, M.S., Linking phenology to mating system: Exploring the reproductive biology of the threatened palm species Butia eriospatha (2012) J. Hered., 103, pp. 842-852. , –
  • Nei, M., Estimation of average heterozygosity and genetic distance from a small number of individuals (1978) Genetics, 89, pp. 583-590. , –
  • Noss, A.J., Cuéllar, R.L., Barrientos, J., Maffei, L., Cuéllar, E., Arispe, R., Rúmiz, D., Rivero, K., A camera trapping and radio telemetry study of lowland tapir (Tapirus terrestris) in bolivian dry forests (2003) Tapir Conserv. (Newsletter IUCN/SSC Tapir Spec. Group), 12, pp. 24-32. , –
  • Olmos, F., Pardini, R., Boulhosa, R.L.P., Bürgi, R., Morsello, C., Do tapirs steal food from palm seed predators or give them a lift? (1999) Biotropica, 31, pp. 375-379. , –
  • Ouborg, N.J., Piquot, Y., Van Groenendael, J.M., Population genetics, molecular markers and the study of dispersal in plants (1999) J. Ecol., 87, pp. 551-568. , –
  • Pires, M.M., Galetti, M., Donatti, C.I., Pizo, M.A., Dirzo, R., Guimarães, P.R., Reconstructing past ecological networks: The reconfiguration of seed-dispersal interactions after megafaunal extinction (2014) Oecologia, 175, pp. 1247-1256. , –
  • Ripple, W.J., Newsome, T.M., Wolf, C., Dirzo, R., Everatt, K.T., Galetti, M., Hayward, M.W., Van Valkenburgh, B., Collapse of the world's largest herbivores (2015) Sci. Adv., 1
  • Schmitt, J., Antonovics, J., Experimental studies of the evolutionary significance of sexual reproduction. IV. Effect of neighbor relatedness and aphid infestation on seedling performance (1986) Evolution, 40, pp. 830-836. , –
  • Schuster, W.S.F., Mitton, J.B., Relatedness within clusters of a bird-dispersed pine and the potential for kin interactions (1991) Heredity, 67, pp. 41-48. , –
  • Scofield, D.G., Alfaro, V.R., Sork, V.L., Grivet, D., Martinez, E., Papp, J., Pluess, A.R., Smouse, P.E., Foraging patterns of acorn woodpeckers (Melanerpes formicivorus) on valley oak (Quercus lobata Née) in two California oak savanna-woodlands (2011) Oecologia, 166, pp. 187-196. , –
  • Scofield, D.G., Sork, V.L., Smouse, P.E., Influence of acorn woodpecker social behaviour on transport of coast live oak (Quercus agrifolia) acorns in a southern California oak savanna (2010) J. Ecol., 98, pp. 561-572. , –
  • Sica, Y.V., Bravo, S.P., Giombini, M.I., Spatial patterns of pindó palm (Syagrus romanzoffiana) recruitment in argentinian Atlantic Forest: The importance of tapir and effects of defaunation (2014) Biotropica, 46, pp. 696-703. , –
  • Sork, V.L., Smouse, P.E., Genetic analysis of landscape connectivity in tree populations (2006) Landsc. Ecol., 21, pp. 821-836. , –
  • (2001) STATISTICA (data analysis software system). Version 6, , www.statsoft.com
  • Stoner, K.E., Riba-Hernández, P., Vulinec, K., Lambert, J.E., The role of mammals in creating and modifying seedshadows in tropical forests and some possible consequences of their elimination (2007) Biotropica, 39, pp. 316-327. , –
  • Taber, A., Chalukian, S.C., Altrichter, M., Minkowski, K., Lizárraga, L., Sanderson, E., Rumiz, D., Zapata Ríos, G., Grupo Especialista de la CSE/UICN en Cerdos, Pecaríes e Hipopótamos; Grupo Especialista de la CSE/UICN en Tapires (2008) El destino de los arquitectos de los bosques neotropicales: Evaluación de la distribución y el estado de conservación de los pecaríes labiados y los tapires de tierras bajas, , Wildlife Conservation Society and Wildlife Trust, New York, NY
  • Tobler, M.W., (2008) The ecology of the lowland tapir in Madre de Dios, Peru: Using new technologies to study large rainforest mammals, , PhD Dissertation., Texas A&M University, College Station, TX
  • Torimaru, T., Tani, N., Tsumura, Y., Nishimura, N., Tomaru, N., Effects of kin-structured seed dispersal on the genetic structure of the clonal dioecious shrub Ilex leucoclada (2007) Evolution, 61, pp. 1289-1300. , –
  • Vekemans, X., Hardy, O.J., New insights from fine-scale spatial genetic structure analyses in plant populations (2004) Mol. Ecol., 13, pp. 921-935. , –
  • Vidal, M.M., Pires, M.M., Guimarães, P.R., Large vertebrates as the missing components of seed-dispersal networks (2013) Biol. Conserv., 163, pp. 42-48. , –
  • Wagner, A.P., Creel, S., Kalinowski, S.T., Estimating relatedness and relationships using microsatellite loci with null alleles (2006) Heredity, 97, pp. 336-345. , –
  • Wang, J., Sibship reconstruction from genetic data with typing errors (2004) Genetics, 166, pp. 1963-1979. , –
  • Wang, J., Effects of genotyping errors on parentage exclusion analysis (2010) Mol. Ecol., 19, pp. 5061-5078. , –
  • Wang, J., Computationally efficient sibship and parentage assignment from multilocus marker data (2012) Genetics, 191, pp. 183-194. , –
  • Wang, J., Santure, A.W., Parentage and sibship inference from multilocus genotype data under polygamy (2009) Genetics, 181, pp. 1579-1594. , –
  • Wang, B.C., Sork, V.L., Leong, M.T., Smith, T.B., Hunting of mammals reduces seed removal and dispersal of the afrotropical tree Antrocaryon klaineanum (Anacardiaceae) (2007) Biotropica, 39, pp. 340-347. , –
  • Wenny, D.G., Advantages of seed dispersal: A re-evaluation of directed dispersal (2001) Evol. Ecol. Res., 3, pp. 51-74. , –

Citas:

---------- APA ----------
Giombini, M.I., Bravo, S.P. & Tosto, D.S. (2016) . The key role of the largest extant Neotropical frugivore (Tapirus terrestris) in promoting admixture of plant genotypes across the landscape. Biotropica, 48(4), 499-508.
http://dx.doi.org/10.1111/btp.12328
---------- CHICAGO ----------
Giombini, M.I., Bravo, S.P., Tosto, D.S. "The key role of the largest extant Neotropical frugivore (Tapirus terrestris) in promoting admixture of plant genotypes across the landscape" . Biotropica 48, no. 4 (2016) : 499-508.
http://dx.doi.org/10.1111/btp.12328
---------- MLA ----------
Giombini, M.I., Bravo, S.P., Tosto, D.S. "The key role of the largest extant Neotropical frugivore (Tapirus terrestris) in promoting admixture of plant genotypes across the landscape" . Biotropica, vol. 48, no. 4, 2016, pp. 499-508.
http://dx.doi.org/10.1111/btp.12328
---------- VANCOUVER ----------
Giombini, M.I., Bravo, S.P., Tosto, D.S. The key role of the largest extant Neotropical frugivore (Tapirus terrestris) in promoting admixture of plant genotypes across the landscape. Biotropica. 2016;48(4):499-508.
http://dx.doi.org/10.1111/btp.12328