Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte la política de Acceso Abierto del editor

Abstract:

Arterial viscoelasticity can be described with a complex modulus (E*) in the frequency domain. In arteries, E* presents a power-law response with a plateau for higher frequencies. Constitutive models based on a combination of purely elastic and viscous elements can be represented with integer order differential equations but show several limitations. Recently, fractional derivative models with fewer parameters have proven to be efficient in describing rheological tissues. A new element, called "spring-pot", that interpolates between springs and dashpots is incorporated. Starting with a Voigt model, we proposed two fractional alternative models with one and two spring-pots. The three models were tested in an anesthetized sheep in a control state and during smooth muscle activation. A least squares method was used to fit E*. Local activation induced a vascular constriction with no pressure changes. The E* results confirmed the steep increase from static to dynamic values and a plateau in the range 2-30 Hz, coherent with fractional model predictions. Activation increased E*, affecting its real and imaginary parts separately. Only the model with two spring-pots correctly followed this behavior with the best performance in terms of least squares errors. In a context where activation separately modifies E*, this alternative model should be considered in describing arterial viscoelasticity in vivo. © 2007 - IOS Press and the authors. All rights reserved.

Registro:

Documento: Artículo
Título:A fractional derivative model to describe arterial viscoelasticity
Autor:Craiem, D.; Armentano, R.L.
Filiación:Favaloro University, Facultad de Ingeniería, Ciencias Exactas Y Naturales, Buenos Aires, Argentina
Universidad Favaloro, FICEN, Av. Belgrano 1723 (C1093AAS), Ciudad de Buenos Aires, Argentina
Idioma: Inglés
Palabras clave:Arterial wall mechanics; Complex modulus; Constitutive models; Fractional calculus; Viscoelasticity; animal experiment; animal tissue; artery; artery wall; article; experimental model; in vivo study; nonhuman; prediction; pressure; theoretical model; viscoelasticity; Animals; Aorta; Arteries; Elasticity; Humans; Models, Cardiovascular; Muscle, Smooth, Vascular; Sheep; Stress, Mechanical; Viscosity
Año:2007
Volumen:44
Número:4
Página de inicio:251
Página de fin:263
Título revista:Biorheology
Título revista abreviado:Biorheology
ISSN:0006355X
CODEN:BRHLA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0006355X_v44_n4_p251_Craiem

Referencias:

  • Armentano, R.L., Barra, J.G., Levenson, J., Simon, A., Pichel, R.H., Arterial wall mechanics in conscious dogs. Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior (1995) Circ. Res, 76, pp. 468-678
  • Armentano, R.L., Barra, J.G., Santana, D.B., Pessana, F.M., Graf, S., Craiem, D., Brandani, L.M., Sanchez, R.A., Smart damping modulation of carotid wall energetics in human hypertension: Effects of angiotensin-converting enzyme inhibition (2006) Hypertension, 47, pp. 384-390
  • Armentano, R.L., Levenson, J., Barra, J.G., Fischer, E.I., Breitbart, G.J., Pichel, R.H., Simon, A., Assessment of elastin and collagen contribution to aortic elasticity in conscious dogs (1991) Am. J. Physiol, 260, pp. 1870-1877
  • Atanackovic, T.M., Novakovic, B.N., On a fractional derivative type of a viscoelastic body (2002) Theor. Appl. Mech, 28, pp. 27-37
  • Bagley, R.L., Torvik, P.J., A theoretical basis for the application of fractional calculus to viscoelasticity (1983) J. Rheol, 27, pp. 201-210
  • Bagley, R.L., Torvik, P.J., On the fractional calculus model of viscoelastic behavior (1986) J. Rheol, 30, pp. 133-155
  • Barra, J.G., Armentano, R.L., Levenson, J., Fischer, E.I., Pichel, R.H., Simon, A., Assessment of smooth muscle contribution to descending thoracic aortic elastic mechanics in conscious dogs (1993) Circ. Res, 73, pp. 1040-1050
  • Bauer, R.D., Rheological approaches of arteries (1984) Biorheology, 1 (SUPPL.), pp. 159-167
  • Bergel, D.H., The dynamic elastic properties of the arterial wall (1961) J. Physiol, 156, pp. 458-469
  • Bia, D., Armentano, R.L., Craiem, D., Grignola, J., Gines, F., Simon, A., Levenson, J., Smooth muscle role on pulmonary arterial function during acute pulmonary hypertension in sheep (2004) Acta Physiol. Scand, 181, pp. 359-366
  • Cox, R.H., Viscoelastic properties of canine pulmonary arteries (1984) Am. J. Physiol, 246, pp. 90-96
  • Djordjevic, V.D., Jaric, J., Fabry, B., Fredberg, J.J., Stamenovic, D., Fractional derivatives embody essential features of cell rheological behavior (2003) Ann. Biomed. Eng, 31, pp. 692-699
  • Dobrin, P.B., Rovick, A.A., Influence of vascular smooth muscle on contractile mechanisms and elasticity of arteries (1969) Am. J. Physiol. Heart Circ. Physiol, 217, pp. 1644-1651
  • Doehring, T.C., Carew, E.O., Vesely, I., The effect of strain rate on the viscoelastic response of aortic valve tissue: A direct-fit approach (2004) Ann. Biomed. Eng, 32, pp. 223-232
  • Fabry, B., Maksym, G.N., Butler, J.P., Glogauer, M., Navajas, D., Fredberg, J.J., Scaling the microrheology of living cells (2001) Phys. Rev. Letters, 87, p. 148102
  • Gamero, L.G., Armentano, R.L., Barra, J.G., Simon, A., Levenson, J., Identification of arterial wall dynamics in conscious dogs (2001) Exp. Physiol, 86, pp. 519-528
  • Gow, B.S., Taylor, M.G., Measurement of viscoelastic properties of arteries in the living dog (1968) Circ. Res, 23, pp. 111-122
  • Hardung, V., Comparative studies on the dynamic elasticity and viscosity of blood vessels, rubber and synthetic elastomers (1953) II Helv. Physiol. Pharmacol. Acta, 11, pp. 194-211
  • Inaudi, J.A., Kelly, J.M., Linear hysteretic damping and the Hilbert transform (1995) J. Eng. Mech, 121, pp. 626-632
  • Jagër, I.L., Viscoelastic behavior of organic materials: Consequences of a logarithmic dependence of force on strain rate (2005) J. Biomech, 38, pp. 1451-1458
  • Kiss, M.Z., Varghese, T., Hall, T.J., Viscoelastic characterization of in vitro canine tissue (2004) Phys. Med. Biol, 49, pp. 4207-4218
  • Koeller, R.C., Application of fractional calculus to the theory of viscoelasticity (1984) J. Appl. Mech, 51, pp. 299-307
  • Magin, R.L., Fractional calculus in bioengineering, parts 1, 2 and 3 (2004) Crit. Rev. Biomed. Eng, 32, pp. 1-377
  • Milnor, W.R., (1984) Hemodynamics, pp. 78-80. , 2nd edn, Williams & Wilkins, Baltimore, MD
  • Pagani, M., Mirsky, I., Baig, H., Manders, W.T., Kerkhof, P., Vatner, S.F., Effects of age on aortic pressure-diameter and elastic stiffness-stress relationships in unanesthetized sheep (1979) Circ. Res, 44, pp. 420-429
  • Patel, D.J., De Freitas, F.M., Greenfield, J.R., Fry, D.L., Relation of radius to pressure along the aorta in living dogs (1963) J. Appl. Physiol, 18, pp. 1111-1117
  • Peterson, L.H., Jensen, R.E., Parnell, J., Mechanical properties of arteries in vivo (1960) Circ. Res, 8, pp. 622-639
  • Rossikhin, Y.A., Shitikova, M.V., Analysis of the viscoelastic rod dynamics via models involving fractional derivatives or operators of two different orders (2004) Shock Vib. Dig, 36, pp. 3-26
  • Schiessel, H., Blumen, A., Mesoscopic of the sol-gel transition: Ladder models and fractal networks (1995) Macromolecules, 28, pp. 4013-4019
  • Suki, B., Varabais, A.L., Lutchen, K.R., Lung tissue viscoelasticity: A mathematical framework and its molecular basis (1994) J. Appl. Physiol, 76, pp. 2749-2759
  • Wells, S.M., Langille, B.L., Adamson, S.L., In vivo and in vitro mechanical properties of the sheep thoracic aorta in the perinatal period and adulthood (1998) Am. J. Physiol, 274, pp. 1749-1760
  • Westerhof, N., Noordergraaf, A., Arterial viscoelasticity: A generalized model. Effect on input impedance and wave travel in the systematic tree (1970) J. Biomech, 3, pp. 357-379

Citas:

---------- APA ----------
Craiem, D. & Armentano, R.L. (2007) . A fractional derivative model to describe arterial viscoelasticity. Biorheology, 44(4), 251-263.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0006355X_v44_n4_p251_Craiem [ ]
---------- CHICAGO ----------
Craiem, D., Armentano, R.L. "A fractional derivative model to describe arterial viscoelasticity" . Biorheology 44, no. 4 (2007) : 251-263.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0006355X_v44_n4_p251_Craiem [ ]
---------- MLA ----------
Craiem, D., Armentano, R.L. "A fractional derivative model to describe arterial viscoelasticity" . Biorheology, vol. 44, no. 4, 2007, pp. 251-263.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0006355X_v44_n4_p251_Craiem [ ]
---------- VANCOUVER ----------
Craiem, D., Armentano, R.L. A fractional derivative model to describe arterial viscoelasticity. Biorheology. 2007;44(4):251-263.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0006355X_v44_n4_p251_Craiem [ ]