Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The adiabatic potential energy surfaces (PES) of six trisaccharides-namely 3,6-An-α-D-Galp-(1-→3)-β-D-Galp-(1→4)-3, 6-An-α-D-Galp, β-D-Galp-(1→4)-3,6-An-α-D-Galp-(1→ 3)-β-D-Galp, and their derivatives sulfated on positions 2 and 4 of the β-galactose unit-were obtained using the MM3 force field. Each PES was described by a single contour map for which the energy is plotted against the two ψ glycosidic angles, given the small variations of the φ glycosidic torsional angle in the low-energy regions of disaccharide maps. In five of the six examples, the surfaces are those expected from the maps of the disaccharidic repeating units of carrageenans, with less important factors altering the additive effect of both linkages. However, when a sulfate group is present on C2 of a β-galactose reducing end, a new low-energy minimum in a different region is produced, originated in a hydrogen bond between the first and third monosaccharidic moieties of the trisaccharide. The flexibility of the β-linkages is nearly identical to that in their disaccharide counterparts, while that of the a-linkages is slightly reduced, independent of their presence closer or further away from the reducing end. A fair agreement is observed between the x-ray fiber diffraction analysis for a κ-carrageenan double helix and the surfaces obtained for the trisaccharide analogs of that polymer. © 2003 Wiley Periodicals, Inc.

Registro:

Documento: Artículo
Título:MM3 potential energy surfaces of trisaccharides. II. Carrageenan models containing 3,6-anhydro-D-galactose
Autor:Stortz, C.A.; Cerezo, A.S.
Filiación:Depto. de Quimica Organica-CIHIDECAR, Fac. Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Palabras clave:3,6-Anhydrogalactose; Carrageenans; MM3; Molecular mechanics; Potential energy surfaces; Trisaccharides; Diffraction; Hydrogen bonds; Potential energy; Trisaccharides; Biopolymers; 3,6 anhydrogalactose; carbohydrate derivative; carrageenan; disaccharide; galactose; glycoside; polymer; trisaccharide; unclassified drug; article; chemical bond; energy; force; hydrogen bond; model; molecular mechanics; surface property; X ray diffraction; beta-Galactosidase; Carbohydrate Conformation; Carbohydrate Sequence; Carrageenan; Disaccharides; Galactose; Hydrogen Bonding; Models, Molecular; Models, Statistical; Molecular Sequence Data; Trisaccharides; X-Ray Diffraction
Año:2003
Volumen:70
Número:2
Página de inicio:227
Página de fin:239
DOI: http://dx.doi.org/10.1002/bip.10468
Título revista:Biopolymers
Título revista abreviado:Biopolymers
ISSN:00063525
CODEN:BIPMA
CAS:carrageenan, 9000-07-1, 9049-05-2, 9061-82-9, 9064-57-7; galactose, 26566-61-0, 50855-33-9, 59-23-4; 3,6-anhydrogalactose; beta-Galactosidase, EC 3.2.1.23; Carrageenan, 9000-07-1; Disaccharides; Galactose, 26566-61-0; Trisaccharides
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00063525_v70_n2_p227_Stortz

Referencias:

  • Stortz, C.A., Cerezo, A.S., (2003) Carbohydr Res, 338, pp. 95-107
  • Stortz, C.A., Cerezo, A.S., (2000) Curr Top Phytochem, 4, pp. 121-134
  • Stortz, C.A., (2002) Carbohydr Res, 337, pp. 2311-2323
  • Ragazzi, M., Ferro, D., Provasoli, A., (1986) J Comput Chem, 7, pp. 105-112
  • Ferro, D.R., Pumilia, P., Cassinari, A., Ragazzi, M., (1995) Int J Biol Macromol, 17, pp. 131-136
  • Huige, C.J.M., Altona, C., (1995) J Comput Chem, 16, pp. 56-79
  • Ferro, D.R., Pumilia, P., Ragazzi, M.J., (1997) Comput Chem, 18, pp. 351-367
  • Lamba, D., Glover, S., Mackie, W., Rashid, A., Sheldrick, B., Pérez, S., (1994) Glycobiology, 4, pp. 151-163
  • Le Questel, J.-Y., Cros, S., Mackie, W., Pérez, S., (1995) Int J Biol Macromol, 17, pp. 161-175
  • Janaswamy, S., Chandrasekaran, R., (2001) Carbohydr Res, 335, pp. 181-194
  • Janaswamy, S., Chandrasekaran, R., (2002) Carbohydr Res, 337, pp. 523-535
  • Lamba, D., Segre, A.L., Glover, S., Mackie, W., Sheldrick, B., Pérez, S., (1990) Carbohydr Res, 208, pp. 215-230
  • Lamba, D., Burden, C., Mackie, W., Sheldrick, B., (1986) Carbohydr Res, 155, pp. 11-17
  • Parra, E., Caro, H.-N., Jiménez-Barbero, J., Martín-Lomas, M., Bernabé, M., (1990) Carbohydr Res, 208, pp. 83-92
  • Urbani, R., Di Blas, A., Cesáro, A., (1993) Int J Biol Macromol, 15, pp. 24-29
  • Ueda, K., Ochiai, H., Imamura, A., Nakagawa, S., (1995) Bull Chem Soc Jpn, 68, pp. 95-106
  • Ueda, K., Brady, J.W., (1996) Biopolymers, 38, pp. 461-469
  • Stortz, C.A., Cerezo, A.S., (1994) J Carbohydr Chem, 13, pp. 235-247
  • Stortz, C.A., Cerezo, A.S., (1995) An Asoc Quim Argent, 83, pp. 171-181
  • Stortz, C.A., Cerezo, A.S., (1998) J Carbohydr Chem, 17, pp. 1405-1419
  • Stortz, C.A., (1999) Carbohydr Res, 322, pp. 77-86
  • Stortz, C.A., Cerezo, A.S., (2000) J Carbohydr Chem, 19, pp. 1115-1130
  • Allinger, N.L., Yuh, Y.H., Lii, J.-H., (1989) J Am Chem Soc, 111, pp. 8551-8566
  • Allinger, N.L., Rahman, M., Lii, J.-H., (1990) J Am Chem Soc, 112, pp. 8293-8307
  • Dowd, M.K., Zeng, J., French, A.D., Reilly, P.J., (1992) Carbohydr Res, 230, pp. 223-244
  • Dowd, M.K., French, A.D., Reilly, P.J., (1992) Carbohydr Res, 233, pp. 15-34
  • Dowd, M.K., Reilly, P.J., French, A.D., (1992) J Comput Chem, 13, pp. 102-114
  • Dowd, M.K., French, A.D., Reilly, P.J., (1995) J Carbohydr Chem, 14, pp. 589-600
  • Mendonca, S., Johnson, G.P., French, A.D., Laine, R.A., (2002) J Phys Chem. A, 106, pp. 4115-4124
  • Homans, S.W., (1990) Biochemistry, 29, pp. 9110-9118
  • Homans, S.W., Forster, M., (1992) Glycobiology, 2, pp. 143-151
  • French, A.D., Mouhous-Riou, N., Pérez, S., (1993) Carbohydr Res, 247, pp. 51-62
  • Koča, J., Pérez, S., Imberty, A., (1995) J Comput Chem, 16, pp. 296-310
  • Mazeau, K., Pérez, S., (1998) Carbohydr Res, 311, pp. 203-217
  • Stortz, C.A., Cerezo, A.S., (2002) Carbohydr Res, 337, pp. 1861-1871
  • (1997) Bull QCPE, 17 (1), p. 3
  • Engelsen, S.B., Koca, J., Braccini, I., Hervé du Penhoat, C., Pérez, S., (1995) Carbohydr Res, 276, pp. 1-29
  • Koča, J., (1993) J Mol Struct, 291, pp. 255-269
  • Millane, R.P., Chandrasekaran, R., Arnott, S., Dea, I.C.M., (1988) Carbohydr Res, 182, pp. 1-17
  • Millane, R.P., Nzewi, E.U., Arnott, S., (1989) Frontiers in Carbohydrate Chemistry, pp. 104-131
  • Imberty, A., Pérez, S., (1988) Carbohydr Res, 181, pp. 41-55
  • Jeffrey, G.A., Huang, D.-B., (1991) Carbohydr Res, 222, pp. 47-55

Citas:

---------- APA ----------
Stortz, C.A. & Cerezo, A.S. (2003) . MM3 potential energy surfaces of trisaccharides. II. Carrageenan models containing 3,6-anhydro-D-galactose. Biopolymers, 70(2), 227-239.
http://dx.doi.org/10.1002/bip.10468
---------- CHICAGO ----------
Stortz, C.A., Cerezo, A.S. "MM3 potential energy surfaces of trisaccharides. II. Carrageenan models containing 3,6-anhydro-D-galactose" . Biopolymers 70, no. 2 (2003) : 227-239.
http://dx.doi.org/10.1002/bip.10468
---------- MLA ----------
Stortz, C.A., Cerezo, A.S. "MM3 potential energy surfaces of trisaccharides. II. Carrageenan models containing 3,6-anhydro-D-galactose" . Biopolymers, vol. 70, no. 2, 2003, pp. 227-239.
http://dx.doi.org/10.1002/bip.10468
---------- VANCOUVER ----------
Stortz, C.A., Cerezo, A.S. MM3 potential energy surfaces of trisaccharides. II. Carrageenan models containing 3,6-anhydro-D-galactose. Biopolymers. 2003;70(2):227-239.
http://dx.doi.org/10.1002/bip.10468