Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Local intracellular Ca2+ signals result from Ca2+ flux into the cytosol through individual channels or clusters of channels. To gain a mechanistic understanding of these events we need to know the magnitude and spatial distribution of the underlying Ca2+ flux. However, this is difficult to infer from fluorescence Ca2+ images because the distribution of Ca2+-bound dye is affected by poorly characterized processes including diffusion of Ca2+ ions, their binding to mobile and immobile buffers, and sequestration by Ca2+ pumps. Several methods have previously been proposed to derive Ca2+ flux from fluorescence images, but all require explicit knowledge or assumptions regarding these processes. We now present a novel algorithm that requires few assumptions and is largely model-independent. By testing the algorithm with both numerically generated image data and experimental images of sparklets resulting from Ca2+ flux through individual voltage-gated channels, we show that it satisfactorily reconstructs the magnitude and time course of the underlying Ca2+ currents. © 2005 by the Biophysical Society.


Documento: Artículo
Título:A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients
Autor:Ventura, A.C.; Bruno, L.; Demuro, A.; Parker, I.; Dawson, S.P.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Department of Neurobiology and Behavior, University of California, Irvine, CA, United States
T10-Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, United States
Palabras clave:adenosine triphosphatase (calcium); calcium channel; calcium ion; voltage gated calcium channel; algorithm; article; calcium binding; calcium cell level; calcium current; calcium signaling; calcium transport; cytosol; diffusion; fluorescence; mathematical analysis; model
Página de inicio:2403
Página de fin:2421
Título revista:Biophysical Journal
Título revista abreviado:Biophys. J.
CAS:adenosine triphosphatase (calcium); calcium ion, 14127-61-8


  • Allbritton, N.L., Meyer, T., Stryer, L., Range of messenger action of calcium ion and inositol 1,4,5-triphosphate (1992) Science, 258, pp. 1812-1815
  • Baylor, S.M., Hollingworth, S., Chandler, W.K., Comparison of simulated and measured calcium sparks in intact skeletal muscle fibers of the frog (2002) J. Gen. Physiol., 120, pp. 349-368
  • Blatter, L.A., Hüser, J., Ríos, E., Sarcoplasmic reticulum Ca2+ release flux underlying Ca 2+ sparks in cardiac muscle (1997) Proc. Natl. Acad. Sci. USA., 94, pp. 4176-4181
  • Cheng, H., Lederer, W.J., Cannell, M.B., Calcium sparks: Elementary events underlying excitation-contraction coupling in heart muscle (1993) Science, 262, pp. 740-744
  • Demuro, A., Parker, I., Optical single-channel recording: Imaging Ca2+ flux through individual N-type voltage-gated channels expressed in Xenopus oocytes (2003) Cell Calcium., 34, pp. 499-509
  • Demuro, A., Parker, I., Imaging the activity and localization of single voltage-gated Ca 2+ channels by total internal reflection fluorescence microscopy (2004) Biophys. J., 86, pp. 3250-3259
  • Izu, L.T., Mauban, J.R., Balke, D.W., Wier, W.G., Large currents generate cardiac Ca2+ sparks (2001) Biophys. J., 80, pp. 88-102
  • Gouesbet, G., Reconstruction of vector fields: The case of the Lorenz system (1992) Phys. Rev. A., 46, pp. 1784-1796
  • Hille, B., (2001) Ion Channels of Excitable Membranes, , Sinauer Associates, New York
  • Lee, H.K., Elmslie, K.S., Gating of single N-type calcium channels recorded from bullfrog sympathetic neurons (1999) J. Gen. Physiol., 113, pp. 111-124
  • Lin, Z., Haus, S., Edgerton, J., Lipscombe, D., Identification of functionally distinct isoforms of the N-type Ca 2+ channel in rat sympathetic ganglia (1997) Neuron, 18, pp. 153-166
  • Lukyanenko, V., Wiesner, T.F., Gyorke, S., Termination of Ca2+ release during Ca2+ sparks in rat ventricular myocytes (1998) J. Physiol., 507, pp. 667-677
  • Mindlin, G.B., Hou, X., Solari, H.G., Gilmore, R., Tufillaro, N.B., Classification of strange attractors by integers (1990) Phys. Rev. Lett., 64, pp. 2350-2353
  • Mindlin, G.B., Merener, N., Boyd, P.T., Low-dimensional dynamics outside the laboratory: The case of roAp stars (1998) Europhys. Lett., 42, pp. 31-36
  • Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S., Geometry from a time series (1980) Phys. Rev. Lett., 45, pp. 712-716
  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., (1992) Numerical Recipes in C, p. 671. , Cambridge University Press, Cambridge, UK
  • Pawley, J.B., (1995) Handbook of Biological Confocal Microscopy, , Plenum Press, New York
  • Ríos, E., Stern, M.D., González, A., Pizarro, G., Calcium release flux underlying Ca2+ sparks of frog skeletal muscle (1999) J. Gen. Physiol., 114, pp. 31-48
  • Ríos, E., Brum, G., Ca2+ release flux underlying Ca2+ transients and Ca2+ sparks in skeletal muscle (2002) Frontiers Biosci., 7, pp. d1195-1211
  • Smith, G.D., Keizer, J.E., Stern, M.D., Lederer, W.J., Cheng, H., A simple numerical model of calcium spark formation and detection in cardiac myocytes (1998) Biophys. J., 75, pp. 15-32
  • Soeller, C., Cannell, M.B., Estimation of the sarcoplasmic reticulum Ca2+ release flux underlying Ca2+ sparks (2002) Biophys. J., 82, pp. 2396-2414
  • Sun, X.-P., Callamaras, N., Marchant, J.S., Parker, I., A continuum of InsP3-mediated elementary Ca2+ signaling events in Xenopus oocytes (1998) J. Physiol., 509, pp. 67-80
  • Timmer, J., Müller, T., Melzer, W., Numerical methods to determine calcium release flux from calcium transients in muscle cells (1998) Biophys. J., 74, pp. 1694-1707
  • Ventura, A.C., Bruno, L., Ponce Dawson, S., Probing a reduced equation for intracellular calcium dynamics (2004) Physica a (Amsterdam), 342, pp. 281-287
  • Wagner, J., Keizer, J., Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations (1994) Biophys. J., 67, pp. 447-456
  • Yao, Y., Choi, J., Parker, I., Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes (1995) J. Physiol., 482, pp. 533-553
  • Zou, H., Lifshitz, L.M., Tuft, R.A., Fogarty, K.E., Singer, J.J., Imaging calcium entering the cytosol through a single opening of plasma membrane ion channels: SCCaFTs - Fundamental calcium events (2004) Cell Calcium., 35, pp. 523-533


---------- APA ----------
Ventura, A.C., Bruno, L., Demuro, A., Parker, I. & Dawson, S.P. (2005) . A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients. Biophysical Journal, 88(4), 2403-2421.
---------- CHICAGO ----------
Ventura, A.C., Bruno, L., Demuro, A., Parker, I., Dawson, S.P. "A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients" . Biophysical Journal 88, no. 4 (2005) : 2403-2421.
---------- MLA ----------
Ventura, A.C., Bruno, L., Demuro, A., Parker, I., Dawson, S.P. "A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients" . Biophysical Journal, vol. 88, no. 4, 2005, pp. 2403-2421.
---------- VANCOUVER ----------
Ventura, A.C., Bruno, L., Demuro, A., Parker, I., Dawson, S.P. A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients. Biophys. J. 2005;88(4):2403-2421.