Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A two-dimensional stochastic model for the dynamics of microtubules in gliding-assay experiments is presented here, which includes the viscous drag acting on the moving fiber and the interaction with the kinesins. For this purpose, we model kinesin as a spring, and explicitly use parameter values to characterize the model from experimental data. We numerically compute the mean attachment lifetimes of all motors, the total force exerted on the microtubules at all times, the effects of a distribution in the motor speeds, and also the mean velocity of a microtubule in a gliding assay. We find quantitative agreement with the results of J. Howard, A. J. Hudspeth, and R. D. Vale, Nature. 342:154-158. We perform additional numerical analysis of the individual motors, and show how cancellation of the forces exerted by the many motors creates a resultant longitudinal force much smaller than the maximum force that could be exerted by a single motor. We also examine the effects of inhomogeneities in the motor-speeds. Finally, we present a simple theoretical model for microtubules dynamics in gliding assays. We show that the model can be analytically solved in the limit of few motors attached to the microtubule and in the opposite limit of high motor density. We find that the speed of the microtubule goes like the mean speed of the motors in good quantitative agreement with the experimental and numerical results.

Registro:

Documento: Artículo
Título:A dynamical model of kinesin-microtubule motility assays
Autor:Gibbons, F.; Chauwin, J.-F.; Despósito, M.; José, J.V.
Filiación:Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115, United States
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, RA-1428 Buenos Aires, Argentina
Center for the Interdisciplinary Research on Complex Systems, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
Palabras clave:kinesin; article; calculation; dynamics; mathematical analysis; microtubule; model; velocity; Goes
Año:2001
Volumen:80
Número:6
Página de inicio:2515
Página de fin:2526
DOI: http://dx.doi.org/10.1016/S0006-3495(01)76223-6
Título revista:Biophysical Journal
Título revista abreviado:Biophys. J.
ISSN:00063495
CODEN:BIOJA
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00063495_v80_n6_p2515_Gibbons.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00063495_v80_n6_p2515_Gibbons

Referencias:

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D., (1994) Molecular Biology of the Cell. 3rd Ed., , Garland Publishing, Inc., New York
  • Berg, H.C., (1983) Random Walks in Biology. 2nd Ed., , Princeton University Press, Princeton, NJ
  • Block, S.M., Goldstein, L.S.B., Schnapp, B.J., Bead movement by single kinesin molecules studied with optical tweezers (1990) Nature, 348, pp. 348-352
  • Brainerd, W.S., Goldberg, C.H., Adams, J.C., (1996) Programmer's Guide to Fortran 90, , Springer, New York
  • Coppin, C.M., Finer, J.T., Spudich, J.A., Vale, R.D., Measurement of the isometric force exerted by a single kinesin molecule (1995) Biophys. J., 68, pp. 242s-244s
  • Coy, D., Wagenbach, M., Howard, J., Kinesin takes one 8-nm step for each ATP that it hydrolyses (1999) J. Biol. Chem., 274, pp. 3667-3671
  • Derényi, I., Vicsek, T., The kinesin walk: A dynamic model with elastically coupled heads (1996) Proc. Natl. Acad. Sci. U.S.A., 93, pp. 6775-6779
  • Doi, M., Edwards, S.F., (1986) The Theory of Polymer Dynamics, , Clarendon Press, Oxford
  • Duke, T., Holy, T.E., Leibler, S., "Gliding assays" for motor proteins: A theoretical analysis (1995) Phys. Rev. Lett., 74, pp. 330-333
  • Duke, T., Leibler, S., Motor protein mechanics: A stochastic model with minimal mechanochemical coupling (1996) Biophys. J., 71, pp. 1235-1247
  • Finer, J.T., Simmons, R.M., Spudich, J.A., Single myosin molecule mechanics: Piconewton forces and nanometre steps (1994) Nature, 368, pp. 113-119
  • Gliksman, N.R., Skibbens, R.V., Salmon, E.D., How the transition frequencies of microtubule dynamic instability (nucleation, catastrophe, and rescue) regulate microtubule dynamics in interphase and mitosis: Analysis using a Monte Carlo computer simulation (1993) Mol. Biol. Cell., 4, p. 1035
  • Greenside, H.S., Helfand, E., Numerical integration of stochastic differential equations: II (1981) Bell Syst. Tech. J., 60, pp. 1927-1940
  • Hancock, W., Howard, J., Processivity of the motor protein requires two heads (1998) J. Cell Biol., 140, pp. 1395-1405
  • Helfand, E., Numerical integration of stochastic differential equations (1979) Bell Syst. Tech. J., 58, pp. 2289-2299
  • Hirokawa, N., Kinesin and dynein superfamily proteins and the mechanism of organelle transport (1998) Science, 279, pp. 519-526
  • Hirokawa, N., Pfister, K.K., Yorifuji, H., Wagner, M.C., Brady, S.T., Bloom, G.S., Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration (1989) Cell, 56, pp. 867-878
  • Honerkamp, J., (1994) Stochastic Dynamical Systems, , VCH Publishers, New York
  • Howard, J., Hudspeth, A.J., Vale, R.D., Movement of microtubules by single kinesin molecules (1989) Nature, 342, pp. 154-158
  • Hua, W., Young, E.C., Fleming, M.L., Gelles, J., Coupling of kinesin steps to ATP hydrolysis (1997) Nature, 388, pp. 390-393
  • Hunt, A.J., Gittes, F., Howard, J., The force exerted by a single kinesin molecule against a viscous load (1994) Biophys. J., 67, pp. 766-781
  • Hunt, A.J., Howard, J., Kinesin swivels to permit microtubule movement in any direction (1993) Proc. Natl. Acad. Sci. U.S.A., 90, pp. 11653-11657
  • Leibler, S., Huse, D.A., Porters versus rowers: A unified stochastic model of motor proteins (1993) J. Cell Biol., 121, pp. 1357-1368
  • Lodish, H., Baltimore, D., Berk, A., Zipursky, S.L., Matsudaira, P., Darnell, J., (1995) Molecular Cell Biology. 3rd Ed., , Scientific American Books, New York
  • Peskin, C.S., Oster, G.F., Force production by depolymerizing microtubules: Load-velocity curves and run-pause statistics (1995) Biophys. J., 69, p. 2268
  • Purcell, E.M., Life at low Reynolds number (1977) Am. J. Phys., 45, pp. 3-11
  • Risken, H., (1996) The Fokker-Planck Equation, , Springer, New York
  • Schnitzer, M.J., Block, S.M., Kinesin hydrolyses one ATP per 8-nm step (1997) Nature, 388, pp. 386-390
  • Scholey, J.M., Heuser, J., Yang, J.T., Goldstein, L.S.B., Identification of globular mechanochemical heads of kinesin (1989) Nature, 338, pp. 355-357
  • Svoboda, K., Schmidt, C.F., Schnapp, B.J., Block, S.M., Direct observation of kinesins stepping by optical trapping interferometry (1993) Nature, 365, pp. 721-727
  • Vicsek, T., A statistical physicist's approach to biological: From the kinesin walk to muscle (1997) Bulletin of the American Physical Society March Meeting, , Kansas City, MO. American Physical Society, College Park, MD

Citas:

---------- APA ----------
Gibbons, F., Chauwin, J.-F., Despósito, M. & José, J.V. (2001) . A dynamical model of kinesin-microtubule motility assays. Biophysical Journal, 80(6), 2515-2526.
http://dx.doi.org/10.1016/S0006-3495(01)76223-6
---------- CHICAGO ----------
Gibbons, F., Chauwin, J.-F., Despósito, M., José, J.V. "A dynamical model of kinesin-microtubule motility assays" . Biophysical Journal 80, no. 6 (2001) : 2515-2526.
http://dx.doi.org/10.1016/S0006-3495(01)76223-6
---------- MLA ----------
Gibbons, F., Chauwin, J.-F., Despósito, M., José, J.V. "A dynamical model of kinesin-microtubule motility assays" . Biophysical Journal, vol. 80, no. 6, 2001, pp. 2515-2526.
http://dx.doi.org/10.1016/S0006-3495(01)76223-6
---------- VANCOUVER ----------
Gibbons, F., Chauwin, J.-F., Despósito, M., José, J.V. A dynamical model of kinesin-microtubule motility assays. Biophys. J. 2001;80(6):2515-2526.
http://dx.doi.org/10.1016/S0006-3495(01)76223-6