Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present the results of a detailed molecular dynamics study of the closed form of the P2X4 receptor. The fluctuations observed in the simulations were compared with the changes that occur in the transition from the closed to the open structure. To get further insight on the opening mechanism, the actual displacements were decomposed into interchain motions and intrachain deformations. This analysis revealed that the iris-like expansion of the transmembrane helices mainly results from interchain motions that already take place in the closed conformation. However, these movements cannot reach the amplitude required for the opening of the channel because they are impeded by interactions occurring around the ATP binding pocket. This suggests that the union of ATP produces distortions in the chains that eliminate the restrictions on the interchain displacements, leading to the opening of the pore. © 2016 Biophysical Society

Registro:

Documento: Artículo
Título:The Dynamic Behavior of the P2X4 Ion Channel in the Closed Conformation
Autor:Pierdominici-Sottile, G.; Moffatt, L.; Palma, J.
Filiación:Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Buenos Aires, Argentina
Instituto de Química Física de los Materiales, Medio Ambiente y Energía, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:purinergic P2X4 receptor; channel gating; chemistry; metabolism; molecular dynamics; protein conformation; Ion Channel Gating; Molecular Dynamics Simulation; Protein Conformation; Receptors, Purinergic P2X4
Año:2016
Volumen:111
Número:12
Página de inicio:2642
Página de fin:2650
DOI: http://dx.doi.org/10.1016/j.bpj.2016.10.027
Título revista:Biophysical Journal
Título revista abreviado:Biophys. J.
ISSN:00063495
CODEN:BIOJA
CAS:Receptors, Purinergic P2X4
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00063495_v111_n12_p2642_PierdominiciSottile

Referencias:

  • Khakh, B.S., North, R.A., P2X receptors as cell-surface ATP sensors in health and disease (2006) Nature, 442, pp. 527-532
  • Surprenant, A., North, R.A., Signaling at purinergic P2X receptors (2009) Annu. Rev. Physiol., 71, pp. 333-359
  • Edwards, F.A., Gibb, A.J., Colquhoun, D., ATP receptor-mediated synaptic currents in the central nervous system (1992) Nature, 359, pp. 144-147
  • Khakh, B.S., Henderson, G., ATP receptor-mediated enhancement of fast excitatory neurotransmitter release in the brain (1998) Mol. Pharmacol., 54, pp. 372-378
  • Finger, T.E., Danilova, V., Kinnamon, S.C., ATP signaling is crucial for communication from taste buds to gustatory nerves (2005) Science, 310, pp. 1495-1499
  • Cook, S.P., Vulchanova, L., McCleskey, E.W., Distinct ATP receptors on pain-sensing and stretch-sensing neurons (1997) Nature, 387, pp. 505-508
  • Cockayne, D.A., Hamilton, S.G., Ford, A.P.D.W., Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice (2000) Nature, 407, pp. 1011-1015
  • Galligan, J.J., Enteric P2X receptors as potential targets for drug treatment of the irritable bowel syndrome (2004) Br. J. Pharmacol., 141, pp. 1294-1302
  • Miller, C.M., Boulter, N.R., Smith, N.C., The role of the P2X7 receptor in infectious Diseases (2011) PLoS Pathog., 7, p. e1002212
  • Chessell, I.P., Hatcher, J.P., Buell, G.N., Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain (2005) Pain, 114, pp. 386-396
  • Fabre, J.-E., Nguyen, M., Koller, B.H., Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice (1999) Nat. Med., 5, pp. 1199-1202
  • Jelassi, B., Chantôme, A., Roger, S., P2X7 receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness (2011) Oncogene, 30, pp. 2108-2122
  • Adinolfi, E., Capece, M., Franceschini, A., Emerging roles of P2X receptors in cancer (2015) Curr. Med. Chem., 22, pp. 878-890
  • Browne, L.E., Jiang, L.H., North, R.A., New structure enlivens interest in P2X receptors (2010) Trends Pharmacol. Sci., 31, pp. 229-237
  • Romagnoli, R., Baraldi, P.G., Gessi, S., The P2X7 receptor as a therapeutic target (2008) Expert Opin. Ther. Targets, 12, pp. 647-661
  • Burnstock, G., Kennedy, C., P2X receptors in health and disease (2011) Adv. Pharmacol., 61, pp. 333-372
  • Bean, B.P., ATP-activated channels in rat and bullfrog sensory neurons: concentration dependence and kinetics (1990) J. Neurosci., 10, pp. 1-10
  • Nicke, A., Bäumert, H.G., Schmalzing, G., P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels (1998) EMBO J., 17, pp. 3016-3028
  • North, R.A., Molecular physiology of P2X receptors (2002) Physiol. Rev., 82, pp. 1013-1067
  • Kawate, T., Michel, J.C., Gouaux, E., Crystal structure of the ATP-gated P2X4 ion channel in the closed state (2009) Nature, 460, pp. 592-598
  • Hattori, M., Gouaux, E., Molecular mechanism of ATP binding and ion channel activation in P2X receptors (2012) Nature, 485, pp. 207-212
  • Jiang, L.-H., Rassendren, F., North, R.A., Identification of amino acid residues contributing to the ATP-binding site of a purinergic P2X receptor (2000) J. Biol. Chem., 275, pp. 34190-34196
  • Jiang, R., Martz, A., Grutter, T., A putative extracellular salt bridge at the subunit interface contributes to the ion channel function of the ATP-gated P2X2 receptor (2010) J. Biol. Chem., 285, pp. 15805-15815
  • Ding, S., Sachs, F., Single channel properties of P2X2 purinoceptors (1999) J. Gen. Physiol., 113, pp. 695-720
  • Moffatt, L., Estimation of ion channel kinetics from fluctuations of macroscopic currents (2007) Biophys. J., 93, pp. 74-91
  • Moffatt, L., Hume, R.I., Responses of rat P2X2 receptors to ultrashort pulses of ATP provide insights into ATP binding and channel gating (2007) J. Gen. Physiol., 130, pp. 183-201
  • Jiang, R., Taly, A., Grutter, T., Intermediate closed channel state(s) precede(s) activation in the ATP-gated P2X2 receptor (2012) Channels (Austin), 6, pp. 398-402
  • Jiang, R., Taly, A., Grutter, T., Tightening of the ATP-binding sites induces the opening of P2X receptor channels (2012) EMBO J., 31, pp. 2134-2143
  • Du, J., Dong, H., Zhou, H.-X., Gating mechanism of a P2X4 receptor developed from normal mode analysis and molecular dynamics simulations (2012) Proc. Natl. Acad. Sci. USA, 109, pp. 4140-4145
  • Huang, L.-D., Fan, Y.-Z., Yu, Y., Inherent dynamics of head domain correlates with ATP-recognition of P2X4 receptors: insights gained from molecular simulations (2014) PLoS One, 9, p. e97528
  • Roy, A., Kucukural, A., Zhang, Y., I-TASSER: a unified platform for automated protein structure and function prediction (2010) Nat. Protoc., 5, pp. 725-738
  • Jo, S., Lim, J.B., Im, W., CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes (2009) Biophys. J., 97, pp. 50-58
  • Wu, E.L., Cheng, X., Im, W., CHARMM-GUI Membrane Builder toward realistic biological membrane simulations (2014) J. Comput. Chem., 35, pp. 1997-2004
  • Dickson, C.J., Madej, B.D., Walker, R.C., Lipid14: the Amber lipid force field (2014) J. Chem. Theory Comput., 10, pp. 865-879
  • Darden, T., York, D., Pedersen, L., Particle mesh Ewald: an N log(N) method for Ewald sums in large systems (1993) J. Chem. Phys., 98, pp. 10089-10092
  • Essmann, U., Perera, L., Pedersen, L.G., A smooth particle mesh Ewald method (1995) J. Chem. Phys., 103, pp. 8577-8593
  • Vesper, M.D., de Groot, B.L., Collective dynamics underlying allosteric transitions in hemoglobin (2013) PLOS Comput. Biol., 9, p. e1003232
  • Amadei, A., Linssen, A.B.M., Berendsen, H.J.C., Essential dynamics of proteins (1993) Proteins, 17, pp. 412-425
  • D'Agostino, R.B., Belanger, A., D'Agostino, R.B., Jr., A suggestion for using powerful and informative tests of normality (1990) Am. Stat., 44, pp. 316-321
  • Hess, B., Similarities between principal components of protein dynamics and random diffusion (2000) Phys. Rev. E, 62, pp. 8438-8448
  • Hess, B., Convergence of sampling in protein simulations (2002) Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 65, p. 031910
  • Moradi, M., Tajkhorshid, E., Mechanistic picture for conformational transition of a membrane transporter at atomic resolution (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 18916-18921
  • Tvrdonova, V., Rokic, M.B., Zemkova, H., Identification of functionally important residues of the rat P2X4 receptor by alanine scanning mutagenesis of the dorsal fin and left flipper domains (2014) PLoS One, 9, p. e112902
  • Lörinczi, É., Bhargava, Y., Nicke, A., Involvement of the cysteine-rich head domain in activation and desensitization of the P2X1 receptor (2012) Proc. Natl. Acad. Sci. USA, 109, pp. 11396-11401
  • Yan, Z., Liang, Z., Stojilkovic, S.S., Molecular determinants of the agonist binding domain of a P2X receptor channel (2005) Mol. Pharmacol., 67, pp. 1078-1088
  • Shrivastava, I.H., Bahar, I., Common mechanism of pore opening shared by five different potassium channels (2006) Biophys. J., 90, pp. 3929-3940
  • de Groot, B.L., Vriend, G., Berendsen, H.J., Conformational changes in the chaperonin GroEL: new insights into the allosteric mechanism (1999) J. Mol. Biol., 286, pp. 1241-1249
  • Berendsen, H.J., Hayward, S., Collective protein dynamics in relation to function (2000) Curr. Opin. Struct. Biol., 10, pp. 165-169
  • Bakan, A., Bahar, I., The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 14349-14354
  • de Groot, B.L., Daura, X., Grubmüller, H., Essential dynamics of reversible peptide folding: memory-free conformational dynamics governed by internal hydrogen bonds (2001) J. Mol. Biol., 309, pp. 299-313
  • Lange, O.F., Lakomek, N.-A., de Groot, B.L., Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution (2008) Science, 320, pp. 1471-1475
  • Bahar, I., Lezon, T.R., Shrivastava, I.H., Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins (2010) Chem. Rev., 110, pp. 1463-1497
  • Temiz, N.A., Bahar, I., Inhibitor binding alters the directions of domain motions in HIV-1 reverse transcriptase (2002) Proteins, 49, pp. 61-70
  • Horstink, L.M., Abseher, R., Hilbers, C.W., Functionally important correlated motions in the single-stranded DNA-binding protein encoded by filamentous phage Pf3 (1999) J. Mol. Biol., 287, pp. 569-577

Citas:

---------- APA ----------
Pierdominici-Sottile, G., Moffatt, L. & Palma, J. (2016) . The Dynamic Behavior of the P2X4 Ion Channel in the Closed Conformation. Biophysical Journal, 111(12), 2642-2650.
http://dx.doi.org/10.1016/j.bpj.2016.10.027
---------- CHICAGO ----------
Pierdominici-Sottile, G., Moffatt, L., Palma, J. "The Dynamic Behavior of the P2X4 Ion Channel in the Closed Conformation" . Biophysical Journal 111, no. 12 (2016) : 2642-2650.
http://dx.doi.org/10.1016/j.bpj.2016.10.027
---------- MLA ----------
Pierdominici-Sottile, G., Moffatt, L., Palma, J. "The Dynamic Behavior of the P2X4 Ion Channel in the Closed Conformation" . Biophysical Journal, vol. 111, no. 12, 2016, pp. 2642-2650.
http://dx.doi.org/10.1016/j.bpj.2016.10.027
---------- VANCOUVER ----------
Pierdominici-Sottile, G., Moffatt, L., Palma, J. The Dynamic Behavior of the P2X4 Ion Channel in the Closed Conformation. Biophys. J. 2016;111(12):2642-2650.
http://dx.doi.org/10.1016/j.bpj.2016.10.027