Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Collective cell movement is a crucial component of embryonic development. Intercellular interactions regulate collective cell movement by allowing cells to transfer information. A key question is how collective cell movement itself influences information flow produced in tissues by intercellular interactions. Here, we study the effect of collective cell movement on the synchronization of locally coupled genetic oscillators. This study is motivated by the segmentation clock in zebrafish somitogenesis, where short-range correlated movement of cells has been observed. We describe the segmentation clock tissue by a Voronoi diagram, cell movement by the force balance of self-propelled and repulsive forces between cells, the dynamics of the direction of self-propelled motion, and the synchronization of genetic oscillators by locally coupled phase oscillators. We find that movement with a correlation length of about 2 ∼ 3 cell diameters is optimal for the synchronization of coupled oscillators. Quantification of cell mixing reveals that this short-range correlation of cell movement allows cells to exchange neighbors most efficiently. Moreover, short-range correlated movement strongly destabilizes nonuniform spatial phase patterns, further promoting global synchronization. Our theoretical results suggest that collective cell movement may enhance the synchronization of the segmentation clock in zebrafish somitogenesis. More generally, collective cell movement may promote information flow in tissues by enhancing cell mixing and destabilizing spurious patterns. © 2014 Biophysical Society.

Registro:

Documento: Artículo
Título:Collective cell movement promotes synchronization of coupled genetic oscillators
Autor:Uriu, K.; Morelli, L.G.
Filiación:Theoretical Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
Departamento de Física, FCEyN UBA and IFIBA, CONICET, Buenos Aires, Argentina
Palabras clave:animal; biological rhythm; cell motion; cytology; embryology; gene expression regulation; genetics; metabolism; somite; zebra fish; Animals; Biological Clocks; Cell Movement; Gene Expression Regulation, Developmental; Somites; Zebrafish
Año:2014
Volumen:107
Número:2
Página de inicio:514
Página de fin:526
DOI: http://dx.doi.org/10.1016/j.bpj.2014.06.011
Título revista:Biophysical Journal
Título revista abreviado:Biophys. J.
ISSN:00063495
CODEN:BIOJA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00063495_v107_n2_p514_Uriu

Referencias:

  • Friedl, P., Gilmour, D., Collective cell migration in morphogenesis, regeneration and cancer (2009) Nat. Rev. Mol. Cell Biol., 10, pp. 445-457
  • Rørth, P., Collective cell migration (2009) Annu. Rev. Cell Dev. Biol., 25, pp. 407-429
  • Montell, D.J., Yoon, W.H., Starz-Gaiano, M., Group choreography: Mechanisms orchestrating the collective movement of border cells (2012) Nat. Rev. Mol. Cell Biol., 13, pp. 631-645
  • Tada, M., Heisenberg, C.P., Convergent extension: Using collective cell migration and cell intercalation to shape embryos (2012) Development, 139, pp. 3897-3904
  • Aman, A., Piotrowski, T., Cell-cell signaling interactions coordinate multiple cell behaviors that drive morphogenesis of the lateral line (2011) Cell Adhes. Migr., 5, pp. 499-508
  • Teddy, J.M., Kulesa, P.M., In vivo evidence for short- and long-range cell communication in cranial neural crest cells (2004) Development, 131, pp. 6141-6151
  • Carmona-Fontaine, C., Matthews, H.K., Mayor, R., Contact inhibition of locomotion in vivo controls neural crest directional migration (2008) Nature, 456, pp. 957-961
  • Coburn, L., Cerone, L., Neufeld, Z., Tactile interactions lead to coherent motion and enhanced chemotaxis of migrating cells (2013) Phys. Biol., 10, p. 046002
  • Roellig, D., Morelli, L.G., Oates, A.C., SnapShot: The segmentation clock (2011) Cell, 145, pp. 800-800e1
  • Pourquié, O., Vertebrate segmentation: From cyclic gene networks to scoliosis (2011) Cell, 145, pp. 650-663
  • Oates, A.C., Morelli, L.G., Ares, S., Patterning embryos with oscillations: Structure, function and dynamics of the vertebrate segmentation clock (2012) Development, 139, pp. 625-639
  • Schröter, C., Herrgen, L., Oates, A.C., Dynamics of zebrafish somitogenesis (2008) Dev. Dyn., 237, pp. 545-553
  • Schröter, C., Oates, A.C., Segment number and axial identity in a segmentation clock period mutant (2010) Curr. Biol., 20, pp. 1254-1258
  • Harima, Y., Takashima, Y., Kageyama, R., Accelerating the tempo of the segmentation clock by reducing the number of introns in the Hes7 gene (2013) Cell Reports, 3, pp. 1-7
  • Hirata, H., Yoshiura, S., Kageyama, R., Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop (2002) Science, 298, pp. 840-843
  • Holley, S.A., Jülich, D., Nüsslein-Volhard, C., Her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis (2002) Development, 129, pp. 1175-1183
  • Oates, A.C., Ho, R.K., Hairy/E(spl)-related (Her) genes are central components of the segmentation oscillator and display redundancy with the Delta/Notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish (2002) Development, 129, pp. 2929-2946
  • Lewis, J., Autoinhibition with transcriptional delay: A simple mechanism for the zebrafish somitogenesis oscillator (2003) Curr. Biol., 13, pp. 1398-1408
  • Takashima, Y., Ohtsuka, T., Kageyama, R., Intronic delay is essential for oscillatory expression in the segmentation clock (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 3300-3305
  • Schröter, C., Ares, S., Oates, A.C., Topology and dynamics of the zebrafish segmentation clock core circuit (2012) PLoS Biol., 10, p. 1001364
  • Jiang, Y.-J., Aerne, B.L., Lewis, J., Notch signalling and the synchronization of the somite segmentation clock (2000) Nature, 408, pp. 475-479
  • Horikawa, K., Ishimatsu, K., Takeda, H., Noise-resistant and synchronized oscillation of the segmentation clock (2006) Nature, 441, pp. 719-723
  • Riedel-Kruse, I.H., Müller, C., Oates, A.C., Synchrony dynamics during initiation, failure, and rescue of the segmentation clock (2007) Science, 317, pp. 1911-1915
  • Mara, A., Schroeder, J., Holley, S.A., Priming, initiation and synchronization of the segmentation clock by deltaD and deltaC (2007) Nat. Cell Biol., 9, pp. 523-530
  • Özbudak, E.M., Lewis, J., Notch signalling synchronizes the zebrafish segmentation clock but is not needed to create somite boundaries (2008) PLoS Genet., 4, p. 15
  • Herrgen, L., Ares, S., Oates, A.C., Intercellular coupling regulates the period of the segmentation clock (2010) Curr. Biol., 20, pp. 1244-1253
  • Okubo, Y., Sugawara, T., Saga, Y., Lfng regulates the synchronized oscillation of the mouse segmentation clock via trans-repression of Notch signalling (2012) Nat. Commun., 3, p. 1141
  • Delaune, E.A., François, P., Amacher, S.L., Single-cell-resolution imaging of the impact of Notch signaling and mitosis on segmentation clock dynamics (2012) Dev. Cell, 23, pp. 995-1005
  • Kulesa, P.M., Fraser, S.E., Cell dynamics during somite boundary formation revealed by time-lapse analysis (2002) Science, 298, pp. 991-995
  • Delfini, M.C., Dubrulle, J., Pourquié, O., Control of the segmentation process by graded MAPK/ERK activation in the chick embryo (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 11343-11348
  • Bénazéraf, B., Francois, P., Pourquié, O., A random cell motility gradient downstream of FGF controls elongation of an amniote embryo (2010) Nature, 466, pp. 248-252
  • Lawton, A.K., Nandi, A., Holley, S.A., Regulated tissue fluidity steers zebrafish body elongation (2013) Development, 140, pp. 573-582
  • Fior, R., Maxwell, A.A., Saúde, L., The differentiation and movement of presomitic mesoderm progenitor cells are controlled by Mesogenin 1 (2012) Development, 139, pp. 4656-4665
  • Dray, N., Lawton, A., Holley, S.A., Cell-fibronectin interactions propel vertebrate trunk elongation via tissue mechanics (2013) Curr. Biol., 23, pp. 1335-1341
  • Uriu, K., Morishita, Y., Iwasa, Y., Random cell movement promotes synchronization of the segmentation clock (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 4979-4984
  • Uriu, K., Ares, S., Morelli, L.G., Optimal cellular mobility for synchronization arising from the gradual recovery of intercellular interactions (2012) Phys. Biol., 9, p. 036006
  • Uriu, K., Ares, S., Morelli, L.G., Dynamics of mobile coupled phase oscillators (2013) Phys. Rev. e Stat. Nonlin. Soft Matter Phys., 87, p. 032911
  • Frasca, M., Buscarino, A., Boccaletti, S., Synchronization of moving chaotic agents (2008) Phys. Rev. Lett., 100, p. 044102
  • Peruani, F., Nicola, E.M., Morelli, L.G., Mobility induces global synchronization of oscillators in periodic extended systems (2010) New J. Phys., 12, p. 093029
  • Fujiwara, N., Kurths, J., Díaz-Guilera, A., Synchronization in networks of mobile oscillators (2011) Phys. Rev. e Stat. Nonlin. Soft Matter Phys., 83, p. 025101
  • Frasca, M., Buscarino, A., Fortuna, L., Spatial pinning control (2012) Phys. Rev. Lett., 108, p. 204102
  • Honda, H., Tanemura, M., Yoshida, A., Estimation of neuroblast numbers in insect neurogenesis using the lateral inhibition hypothesis of cell differentiation (1990) Development, 110, pp. 1349-1352
  • Meineke, F.A., Potten, C.S., Loeffler, M., Cell migration and organization in the intestinal crypt using a lattice-free model (2001) Cell Prolif., 34, pp. 253-266
  • Morishita, Y., Iwasa, Y., Growth based morphogenesis of vertebrate limb bud (2008) Bull. Math. Biol., 70, pp. 1957-1978
  • Toner, J., Tu, Y., Ramaswamy, S., Hydrodynamics and phases of flocks (2005) Ann. Phys., 318, pp. 170-244
  • Vicsek, T., Zafeiris, A., Collective motion (2012) Phys. Rep., 517, pp. 71-140
  • Ramaswamy, S., The mechanics and statistics of active matter (2010) Annu. Rev. Condens. Matter Phys., 1, pp. 323-345
  • Szabó, B., Szöllösi, G.J., Vicsek, T., Phase transition in the collective migration of tissue cells: Experiment and model (2006) Phys. Rev. e Stat. Nonlin. Soft Matter Phys., 74, p. 061908
  • Sakaguchi, H., Shinomoto, S., Kuramoto, Y., Local and global self-entrainments in oscillator lattice (1987) Prog. Theor. Phys., 77, pp. 1005-1010
  • Morelli, L.G., Ares, S., Oates, A.C., Delayed coupling theory of vertebrate segmentation (2009) HFSP J, 3, pp. 55-66
  • Szabó, A., Ünnep, R., Czirók, A., Collective cell motion in endothelial monolayers (2010) Phys. Biol., 7, p. 046007
  • Rafelski, S.M., Keller, L.C., Marshall, W.F., Apparent diffusive motion of centrin foci in living cells: Implications for diffusion-based motion in centriole duplication (2011) Phys. Biol., 8, p. 026010
  • Kuramoto, Y., (1984) Chemical Oscillations, Waves, and Turbulence, , Springer Berlin
  • Farrell, F.D.C., Marchetti, M.C., Tailleur, J., Pattern formation in self-propelled particles with density-dependent motility (2012) Phys. Rev. Lett., 108, p. 248101
  • Hester, S.D., Belmonte, J.M., Glazier, J.A., A multi-cell, multi-scale model of vertebrate segmentation and somite formation (2011) PLOS Comput. Biol., 7, p. 1002155
  • Kabla, A.J., Collective cell migration: Leadership, invasion and segregation (2012) J. R. Soc. Interface, 9, pp. 3268-3278
  • Zhou, C., Kurths, J., Noise-sustained and controlled synchronization of stirred excitable media by external forcing (2005) New J. Phys., 7, p. 18
  • Bi, D., Lopez, J.H., Manning, M.L., Energy barriers and cell migration in densely packed tissues (2014) Soft Matter, 10, pp. 1885-1890
  • Farhadifar, R., Röper, J.C., Jülicher, F., The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing (2007) Curr. Biol., 17, pp. 2095-2104
  • Rauzi, M., Verant, P., Lenne, P.F., Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis (2008) Nat. Cell Biol., 10, pp. 1401-1410
  • Staple, D.B., Farhadifar, R., Jülicher, F., Mechanics and remodelling of cell packings in epithelia (2010) Eur. Phys. J. E. Soft Matter, 33, pp. 117-127
  • Sloan, S.W., A fast algorithm for constructing Delaunay triangulations in the plane (1987) Adv. Eng. Software, 9, pp. 34-55

Citas:

---------- APA ----------
Uriu, K. & Morelli, L.G. (2014) . Collective cell movement promotes synchronization of coupled genetic oscillators. Biophysical Journal, 107(2), 514-526.
http://dx.doi.org/10.1016/j.bpj.2014.06.011
---------- CHICAGO ----------
Uriu, K., Morelli, L.G. "Collective cell movement promotes synchronization of coupled genetic oscillators" . Biophysical Journal 107, no. 2 (2014) : 514-526.
http://dx.doi.org/10.1016/j.bpj.2014.06.011
---------- MLA ----------
Uriu, K., Morelli, L.G. "Collective cell movement promotes synchronization of coupled genetic oscillators" . Biophysical Journal, vol. 107, no. 2, 2014, pp. 514-526.
http://dx.doi.org/10.1016/j.bpj.2014.06.011
---------- VANCOUVER ----------
Uriu, K., Morelli, L.G. Collective cell movement promotes synchronization of coupled genetic oscillators. Biophys. J. 2014;107(2):514-526.
http://dx.doi.org/10.1016/j.bpj.2014.06.011