Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The interior of cells is a highly fluctuating environment. Fluctuations set limits to the accuracy with which endogenous processes can occur. The physical principles that rule these limits also affect the experimental quantification of biophysical parameters in situ. The characterization of fluctuations, on the other hand, provides a way to quantify biophysical parameters. But as with any random process, enough data has to be collected to achieve a reliable quantitative description. In this article we study the accuracy with which intracellular concentrations can be estimated using fluorescence correlation spectroscopy. We show that, when the observed molecules interact with immobile species or experience other restrictions to their movement, the hypotheses commonly used to estimate concentrations are no longer valid. The interactions with immobile sites reduce the fluorescence variance by a finite amount. The time that is necessary to obtain an accurate concentration estimate, on the other hand, is hundreds of times larger than the slowest correlation time and is much larger when the sites move slowly than when they are immobile. Our analysis is applicable to other related techniques and it also sheds light on the way in which effector concentrations are read by target molecules in cells. © 2014 Biophysical Society.

Registro:

Documento: Artículo
Título:How long should a system be observed to obtain reliable concentration estimates from the measurement of fluctuations?
Autor:Ipiña, E.P.; Dawson, S.P.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Palabras clave:binding site; biophysics; cells; computer simulation; diffusion; mathematical computing; metabolism; spectrofluorometry; statistics; Binding Sites; Biophysical Phenomena; Cells; Computer Simulation; Diffusion; Numerical Analysis, Computer-Assisted; Spectrometry, Fluorescence; Stochastic Processes
Año:2014
Volumen:107
Número:11
Página de inicio:2674
Página de fin:2683
DOI: http://dx.doi.org/10.1016/j.bpj.2014.10.046
Título revista:Biophysical Journal
Título revista abreviado:Biophys. J.
ISSN:00063495
CODEN:BIOJA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00063495_v107_n11_p2674_Ipina

Referencias:

  • Magde, D., Elson, E., Webb, W.W., Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy (1972) Phys. Rev. Lett., 29, pp. 705-708
  • Berland, K.M., So, P.T., Gratton, E., Two-photon fluorescence correlation spectroscopy: Method and application to the intracellular environment (1995) Biophys. J., 68, pp. 694-701
  • Krichevsky, O., Bonnet, G., Fluorescence correlation spectroscopy: The technique and its applications (2002) Rep. Prog. Phys., 65, p. 251
  • Schwille, P., Haupts, U., Webb, W.W., Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation (1999) Biophys. J., 77, pp. 2251-2265
  • Elson, E.L., Fluorescence correlation spectroscopy measures molecular transport in cells (2001) Traffic, 2, pp. 789-796
  • Kim, S.A., Schwille, P., Intracellular applications of fluorescence correlation spectroscopy: Prospects for neuroscience (2003) Curr. Opin. Neurobiol., 13, pp. 583-590
  • Grünwald, D., Cardoso, M.C., Buschmann, V., Diffusion and binding properties investigated by fluorescence correlation spectroscopy (FCS) (2005) Curr. Pharm. Biotechnol., 6, pp. 381-386
  • Bismuto, E., Gratton, E., Lamb, D.C., Dynamics of ANS binding to tuna apomyoglobin measured with fluorescence correlation spectroscopy (2001) Biophys. J., 81, pp. 3510-3521
  • Digman, M.A., Sengupta, P., Gratton, E., Fluctuation correlation spectroscopy with a laser-scanning microscope: Exploiting the hidden time structure (2005) Biophys. J., 88, pp. 33-L36
  • Haustein, E., Schwille, P., Fluorescence correlation spectroscopy: Novel variations of an established technique (2007) Annu. Rev. Biophys. Biomol. Struct., 36, pp. 151-169
  • Bialek, W., Setayeshgar, S., Physical limits to biochemical signaling (2005) Proc. Natl. Acad. Sci. USA., 102, pp. 10040-10045
  • Gregor, T., Tank, D.W., Bialek, W., Probing the limits to positional information (2007) Cell, 130, pp. 153-164
  • Bialek, W., Setayeshgar, S., Cooperativity, sensitivity, and noise in biochemical signaling (2008) Phys. Rev. Lett., 100, p. 258101
  • Ipiña, E.P., Dawson, S.P., From free to effective diffusion coefficients in fluorescence correlation spectroscopy experiments (2013) Phys. Rev. e Stat. Nonlin. Soft Matter Phys., 87, p. 022706
  • Pando, B., Dawson, S.P., Pearson, J.E., Messages diffuse faster than messengers (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 5338-5342
  • Sigaut, L., Ponce, M.L., Dawson, S.P., Optical techniques provide information on various effective diffusion coefficients in the presence of traps (2010) Phys. Rev. e Stat. Nonlin. Soft Matter Phys., 82, p. 051912
  • Sigaut, L., Pearson, J.E., Ponce Dawson, S., Messages do diffuse faster than messengers: Reconciling disparate estimates of the morphogen Bicoid diffusion coefficient (2014) PLOS Comput. Biol., 10, p. 1003629
  • Ventura, A.C., Bush, A., Colman-Lerner, A., Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range (2014) Proc. Natl. Acad. Sci., 111, pp. 3860-E3869
  • Gillespie, D.T., A general method for numerically simulating the stochastic time evolution of coupled chemical reactions (1976) J. Comput. Phys., 22, pp. 403-434
  • Abu-Arish, A., Porcher, A., Fradin, C., High mobility of Bicoid captured by fluorescence correlation spectroscopy: Implication for the rapid establishment of its gradient (2010) Biophys. J., 99, pp. 33-L35
  • Koppel, D.E., Statistical accuracy in fluorescence correlation spectroscopy (1974) Phys. Rev. A, 10, pp. 1938-1945
  • Qian, H., On the statistics of fluorescence correlation spectroscopy (1990) Biophys. Chem., 38, pp. 49-57

Citas:

---------- APA ----------
Ipiña, E.P. & Dawson, S.P. (2014) . How long should a system be observed to obtain reliable concentration estimates from the measurement of fluctuations?. Biophysical Journal, 107(11), 2674-2683.
http://dx.doi.org/10.1016/j.bpj.2014.10.046
---------- CHICAGO ----------
Ipiña, E.P., Dawson, S.P. "How long should a system be observed to obtain reliable concentration estimates from the measurement of fluctuations?" . Biophysical Journal 107, no. 11 (2014) : 2674-2683.
http://dx.doi.org/10.1016/j.bpj.2014.10.046
---------- MLA ----------
Ipiña, E.P., Dawson, S.P. "How long should a system be observed to obtain reliable concentration estimates from the measurement of fluctuations?" . Biophysical Journal, vol. 107, no. 11, 2014, pp. 2674-2683.
http://dx.doi.org/10.1016/j.bpj.2014.10.046
---------- VANCOUVER ----------
Ipiña, E.P., Dawson, S.P. How long should a system be observed to obtain reliable concentration estimates from the measurement of fluctuations?. Biophys. J. 2014;107(11):2674-2683.
http://dx.doi.org/10.1016/j.bpj.2014.10.046