Artículo

Pallavicini, C.; Levi, V.; Wetzler, D.E.; Angiolini, J.F.; Benseñor, L.; Despósito, M.A.; Bruno, L. "Lateral motion and bending of microtubules studied with a new single-filament tracking routine in living cells" (2014) Biophysical Journal. 106(12):2625-2635
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The cytoskeleton is involved in numerous cellular processes such as migration, division, and contraction and provides the tracks for transport driven by molecular motors. Therefore, it is very important to quantify the mechanical behavior of the cytoskeletal filaments to get a better insight into cell mechanics and organization. It has been demonstrated that relevant mechanical properties of microtubules can be extracted from the analysis of their motion and shape fluctuations. However, tracking individual filaments in living cells is extremely complex due, for example, to the high and heterogeneous background. We introduce a believed new tracking algorithm that allows recovering the coordinates of fluorescent microtubules with ∼9 nm precision in in vitro conditions. To illustrate potential applications of this algorithm, we studied the curvature distributions of fluorescent microtubules in living cells. By performing a Fourier analysis of the microtubule shapes, we found that the curvatures followed a thermal-like distribution as previously reported with an effective persistence length of ∼20 μm, a value significantly smaller than that measured in vitro. We also verified that the microtubule-associated protein XTP or the depolymerization of the actin network do not affect this value; however, the disruption of intermediate filaments decreased the persistence length. Also, we recovered trajectories of microtubule segments in actin or intermediate filament-depleted cells, and observed a significant increase of their motion with respect to untreated cells showing that these filaments contribute to the overall organization of the microtubule network. Moreover, the analysis of trajectories of microtubule segments in untreated cells showed that these filaments presented a slower but more directional motion in the cortex with respect to the perinuclear region, and suggests that the tracking routine would allow mapping the microtubule dynamical organization in cells. © 2014 Biophysical Society.

Registro:

Documento: Artículo
Título:Lateral motion and bending of microtubules studied with a new single-filament tracking routine in living cells
Autor:Pallavicini, C.; Levi, V.; Wetzler, D.E.; Angiolini, J.F.; Benseñor, L.; Despósito, M.A.; Bruno, L.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Fundación Instituto Leloir, Inst. de Invest. Bioquimicas de Buenos Aires-Consejo Nac. de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
Palabras clave:actin; microtubule associated protein; algorithm; animal; biophysics; cell survival; cell tracking; cytology; Fourier analysis; intermediate filament; melanophore; metabolism; microtubule; procedures; Xenopus laevis; Actins; Algorithms; Animals; Biophysical Phenomena; Cell Survival; Cell Tracking; Fourier Analysis; Intermediate Filaments; Melanophores; Microtubule-Associated Proteins; Microtubules; Xenopus laevis
Año:2014
Volumen:106
Número:12
Página de inicio:2625
Página de fin:2635
DOI: http://dx.doi.org/10.1016/j.bpj.2014.04.046
Título revista:Biophysical Journal
Título revista abreviado:Biophys. J.
ISSN:00063495
CODEN:BIOJA
CAS:Actins; Microtubule-Associated Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00063495_v106_n12_p2625_Pallavicini

Referencias:

  • Fletcher, D.A., Mullins, R.D., Cell mechanics and the cytoskeleton (2010) Nature, 463, pp. 485-492
  • Mouneimne, G., Hansen, S.D., Brugge, J.S., Differential remodeling of actin cytoskeleton architecture by profilin isoforms leads to distinct effects on cell migration and invasion (2012) Cancer Cell, 22, pp. 615-630
  • Goldstein, D., Elhanan, T., Weihs, D., Origin of active transport in breast-cancer cells (2013) Soft Matter, 9, pp. 7167-7173
  • Howard, J., (2001) Mechanics of Motor Proteins and the Cytoskeleton, , Sinauer Associates Sunderland, MA
  • Mitchinson, T., Kirschner, M., Dynamic instability of microtubule growth (1984) Nature, 312 (5991), pp. 237-242. , DOI 10.1038/312237a0
  • Schopferer, M., Bär, H., Willenbacher, N., Desmin and vimentin intermediate filament networks: Their viscoelastic properties investigated by mechanical rheometry (2009) J. Mol. Biol., 388, pp. 133-143
  • Mandelkow, E., Mandelkow, E.M., Microtubules and microtubule-associated proteins (1995) Curr. Opin. Cell Biol., 7, pp. 72-81
  • Samsonov, A., Yu, J.-Z., Rasenick, M., Popov, S.V., Tau interaction with microtubules in vivo (2004) Journal of Cell Science, 117 (25), pp. 6129-6141. , DOI 10.1242/jcs.01531
  • Felgner, H., Frank, R., Schliwa, M., Flexural rigidity of microtubules measured with the use of optical tweezers (1996) Journal of Cell Science, 109 (2), pp. 509-516
  • Mickey, B., Howard, J., Rigidity of microtubules is increased by stabilizing agents (1995) J. Cell Biol., 130, pp. 909-917
  • Portran, D., Zoccoler, M., Vantard, M., MAP65/Ase1 promote microtubule flexibility (2013) Mol. Biol. Cell, 24, pp. 1964-1973
  • Gittes, F., Mickey, B., Nettleton, J., Howard, J., Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape (1993) Journal of Cell Biology, 120 (4), pp. 923-934. , DOI 10.1083/jcb.120.4.923
  • Mizuno, D., Tardin, C., Schmidt, C.F., MacKintosh, F.C., Nonequilibrium mechanics of active cytoskeletal networks (2007) Science, 315 (5810), pp. 370-373. , DOI 10.1126/science.1134404
  • Brangwynne, C.P., Koenderink, G.H., Barry, E., Dogic, Z., MacKintosh, F.C., Weitz, D.A., Bending dynamics of fluctuating biopolymers probed by automated high-resolution filament tracking (2007) Biophysical Journal, 93 (1), pp. 346-359. , http://www.biophysj.org/cgi/reprint/93/1/346.pdf, DOI 10.1529/biophysj.106.096966
  • Brangwynne, C.P., MacKintosh, F.C., Weitz, D.A., Force fluctuations and polymerization dynamics of intracellular microtubules (2007) Proceedings of the National Academy of Sciences of the United States of America, 104 (41), pp. 16128-16133. , http://www.pnas.org/cgi/reprint/104/41/16128, DOI 10.1073/pnas.0703094104
  • Kas, J., Strey, H., Tang, J.X., Finger, D., Ezzell, R., Sackmann, E., Janmey, P.A., F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions (1996) Biophysical Journal, 70 (2), pp. 609-625
  • Bicek, A.D., Tüzel, E., Odde, D.J., Anterograde microtubule transport drives microtubule bending in LLC-PK1 epithelial cells (2009) Mol. Biol. Cell, 20, pp. 2943-2953
  • Levi, V., Serpinskaya, A.S., Gelfand, V., Organelle transport along microtubules in Xenopus melanophores: Evidence for cooperation between multiple motors (2006) Biophys. J., 90, pp. 318-327
  • Cheezum, M.K., Walker, W.F., Guilford, W.H., Quantitative comparison of algorithms for tracking single fluorescent particles (2001) Biophysical Journal, 81 (4), pp. 2378-2388
  • Yildiz, A., Forkey, J.N., McKinney, S.A., Ha, T., Goldman, Y.E., Selvin, P.R., Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization (2003) Science, 300 (5628), pp. 2061-2065. , DOI 10.1126/science.1084398
  • Janson, M.E., Dogterom, M., A bending mode analysis for growing microtubules: Evidence for a velocity-dependent rigidity (2004) Biophys. J., 87, pp. 2723-2736
  • Valdman, D., Atzberger, P.J., Valentine, M.T., Spectral analysis methods for the robust measurement of the flexural rigidity of biopolymers (2012) Biophys. J., 102, pp. 1144-1153
  • Rogers, S.L., Tint, I.S., Gelfand, V.I., Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro (1997) Proc. Natl. Acad. Sci. USA, 94, pp. 3720-3725
  • Olesen, O.F., Kawabata-Fukui, H., Yoshizato, K., Noro, N., Molecular cloning of XTP, a tau-like microtubule-associated protein from Xenopus laevis tadpoles (2002) Gene, 283 (1-2), pp. 299-309. , DOI 10.1016/S0378-1119(01)00869-1, PII S0378111901008691
  • Gross, S.P., Carolina Tuma, M., Deacon, S.W., Serpinskaya, A.S., Reilein, A.R., Gelfand, V.I., Interactions and regulation of molecular motors in Xenopus melanophores (2002) Journal of Cell Biology, 156 (5), pp. 855-865. , DOI 10.1083/jcb.200105055
  • Rodionov, V.I., Hope, A.J., Svitkina, T.M., Borisy, G.G., Functional coordination of microtubule-based and actin-based motility in melanophores (1998) Current Biology, 8 (3), pp. 165-168
  • Rogers, S.L., Gelfand, V.I., Myosin cooperates with microtubule motors during organelle transport in melanophores (1998) Current Biology, 8 (3), pp. 161-164
  • Chang, L., Barlan, K., Goldman, R.D., The dynamic properties of intermediate filaments during organelle transport (2009) J. Cell Sci., 122, pp. 2914-2923
  • De Rossi, M.C., Bruno, L., Levi, V., When size does matter: Organelle size influences the properties of transport mediated by molecular motors (2013) Biochim. Biophys. Acta, 1830, pp. 5095-5103
  • Lee, J.C., Timasheff, S.N., In vitro reconstitution of calf brain microtubules: Effects of solution variables (1977) Biochemistry, 16 (8), pp. 1754-1764
  • Saxton, M.J., Jacobson, K., Single-particle tracking: Applications to membrane dynamics (1997) Annual Review of Biophysics and Biomolecular Structure, 26, pp. 373-399. , DOI 10.1146/annurev.biophys.26.1.373
  • Bicek, A.D., Tüzel, E., Odde, D.J., Analysis of microtubule curvature (2007) Methods Cell Biol., 83, pp. 237-268
  • Wu, J., Misra, G., Dickinson, R.B., Effects of dynein on microtubule mechanics and centrosome positioning (2011) Mol. Biol. Cell, 22, pp. 4834-4841
  • Ruhnow, F., Zwicker, D., Diez, S., Tracking single particles and elongated filaments with nanometer precision (2011) Biophys. J., 100, pp. 2820-2828
  • Wasserman, P.D., (1993) Advanced Methods in Neural Computing, , Van Nostrand Reinhold New York
  • Haykin, S., (1999) Neural Networks: A Comprehensive Foundation, , Prentice Hall Upper Saddle River, NJ
  • Thompson, R.E., Larson, D.R., Webb, W.W., Precise nanometer localization analysis for individual fluorescent probes (2002) Biophysical Journal, 82 (5), pp. 2775-2783
  • Brangwynne, C.P., MacKintosh, F.C., Kumar, S., Geisse, N.A., Talbot, J., Mahadevan, L., Parker, K.K., Weitz, D.A., Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement (2006) Journal of Cell Biology, 173 (5), pp. 733-741. , http://www.jcb.org/cgi/reprint/173/5/733, DOI 10.1083/jcb.200601060
  • Rusan, N.M., Wadsworth, P., Centrosome fragments and microtubules are transported asymmetrically away from division plane in anaphase (2005) Journal of Cell Biology, 168 (1), pp. 21-28. , DOI 10.1083/jcb.200409153
  • Wasteneys, G.O., Ambrose, J.C., Spatial organization of plant cortical microtubules: Close encounters of the 2D kind (2009) Trends Cell Biol., 19, pp. 62-71
  • Gardel, M.L., Kasza, K.E., Weitz, D.A., Chapter 19: Mechanical response of cytoskeletal networks (2008) Methods Cell Biol., 89, pp. 487-519
  • Levi, V., Gratton, E., Exploring dynamics in living cells by tracking single particles (2007) Cell Biochemistry and Biophysics, 48 (1), pp. 1-15. , DOI 10.1007/s12013-007-0010-0
  • Brunstein, M., Bruno, L., Levi, V., Anomalous dynamics of melanosomes driven by myosin-V in Xenopus laevis melanophores (2009) Biophys. J., 97, pp. 1548-1557
  • Robert, D., Aubertin, K., Wilhelm, C., Magnetic nanomanipulations inside living cells compared with passive tracking of nanoprobes to get consensus for intracellular mechanics (2012) Phys. Rev. e Stat. Nonlin. Soft Matter Phys., 85, p. 011905
  • Bruno, L., Levi, V., Despósito, M.A., Transition to superdiffusive behavior in intracellular actin-based transport mediated by molecular motors (2009) Phys. Rev. e Stat. Nonlin. Soft Matter Phys., 80, p. 011912
  • Brangwynne, C.P., Koenderink, G.H., Weitz, D.A., Intracellular transport by active diffusion (2009) Trends Cell Biol., 19, pp. 423-427
  • Zhou, F.-Q., Waterman-Storer, C.M., Cohan, C.S., Focal loss of actin bundles causes microtubule redistribution and growth cone turning (2002) Journal of Cell Biology, 157 (5), pp. 839-849. , DOI 10.1083/jcb.200112014
  • Kulic, I.M., Brown, A.E.X., Gelfand, V.I., The role of microtubule movement in bidirectional organelle transport (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 10011-10016
  • Caspi, A., Granek, R., Elbaum, M., Diffusion and directed motion in cellular transport (2002) Phys. Rev. e Stat. Nonlin. Soft Matter Phys., 66, p. 011916
  • Tolić-Nørrelykke, I.M., Munteanu, E.L., Berg-Sørensen, K., Anomalous diffusion in living yeast cells (2004) Phys. Rev. Lett., 93, p. 078102
  • Raupach, C., Zitterbart, D.P., Fabry, B., Stress fluctuations and motion of cytoskeletal-bound markers (2007) Phys. Rev. e Stat. Nonlin. Soft Matter Phys., 76, p. 011918
  • Bursac, P., Fabry, B., Trepat, X., Lenormand, G., Butler, J.P., Wang, N., Fredberg, J.J., An, S.S., Cytoskeleton dynamics: Fluctuations within the network (2007) Biochemical and Biophysical Research Communications, 355 (2), pp. 324-330. , DOI 10.1016/j.bbrc.2007.01.191, PII S0006291X07002045
  • Brito, D.A., Strauss, J., Magidson, V., Tikhonenko, I., Khodjakov, A., Koonce, M.P., Pushing forces drive the comet-like motility of microtubule arrays in Dictyostelium (2005) Molecular Biology of the Cell, 16 (7), pp. 3334-3340. , DOI 10.1091/mbc.E05-01-0057
  • Demchouk, A.O., Gardner, M.K., Odde, D.J., Microtubule tip tracking and tip structures at the nanometer scale using digital fluorescence microscopy (2011) Cell Mol. Bioeng, 4, pp. 192-204

Citas:

---------- APA ----------
Pallavicini, C., Levi, V., Wetzler, D.E., Angiolini, J.F., Benseñor, L., Despósito, M.A. & Bruno, L. (2014) . Lateral motion and bending of microtubules studied with a new single-filament tracking routine in living cells. Biophysical Journal, 106(12), 2625-2635.
http://dx.doi.org/10.1016/j.bpj.2014.04.046
---------- CHICAGO ----------
Pallavicini, C., Levi, V., Wetzler, D.E., Angiolini, J.F., Benseñor, L., Despósito, M.A., et al. "Lateral motion and bending of microtubules studied with a new single-filament tracking routine in living cells" . Biophysical Journal 106, no. 12 (2014) : 2625-2635.
http://dx.doi.org/10.1016/j.bpj.2014.04.046
---------- MLA ----------
Pallavicini, C., Levi, V., Wetzler, D.E., Angiolini, J.F., Benseñor, L., Despósito, M.A., et al. "Lateral motion and bending of microtubules studied with a new single-filament tracking routine in living cells" . Biophysical Journal, vol. 106, no. 12, 2014, pp. 2625-2635.
http://dx.doi.org/10.1016/j.bpj.2014.04.046
---------- VANCOUVER ----------
Pallavicini, C., Levi, V., Wetzler, D.E., Angiolini, J.F., Benseñor, L., Despósito, M.A., et al. Lateral motion and bending of microtubules studied with a new single-filament tracking routine in living cells. Biophys. J. 2014;106(12):2625-2635.
http://dx.doi.org/10.1016/j.bpj.2014.04.046