Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The morphological features of α-synuclein (AS) amyloid aggregation in vitro and in cells were elucidated at the nanoscale by far-field subdiffraction fluorescence localization microscopy. Labeling AS with rhodamine spiroamide probes allowed us to image AS fibrillar structures by fluorescence stochastic nanoscopy with an enhanced resolution at least 10-fold higher than that achieved with conventional, diffraction-limited techniques. The implementation of dual-color detection, combined with atomic force microscopy, revealed the propagation of individual fibrils in vitro. In cells, labeled protein appeared as amyloid aggregates of spheroidal morphology and subdiffraction sizes compatible with in vitro supramolecular intermediates perceived independently by atomic force microscopy and cryo-electron tomography. We estimated the number of monomeric protein units present in these minute structures. This approach is ideally suited for the investigation of the molecular mechanisms of amyloid formation both in vitro and in the cellular milieu. © 2012 Biophysical Society.

Registro:

Documento: Artículo
Título:Imaging nanometer-sized α-synuclein aggregates by superresolution fluorescence localization microscopy
Autor:Roberti, M.J.; Fölling, J.; Celej, M.S.; Bossi, M.; Jovin, T.M.; Jares-Erijman, E.A.
Filiación:Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires, Buenos Aires, Argentina
Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
Palabras clave:alpha synuclein; nanomaterial; rhodamine; article; chemistry; color; fluorescence microscopy; HeLa cell; human; intracellular space; metabolism; methodology; molecular imaging; protein multimerization; protein secondary structure; alpha-Synuclein; Color; HeLa Cells; Humans; Intracellular Space; Microscopy, Fluorescence; Molecular Imaging; Nanostructures; Protein Multimerization; Protein Structure, Secondary; Rhodamines
Año:2012
Volumen:102
Número:7
Página de inicio:1598
Página de fin:1607
DOI: http://dx.doi.org/10.1016/j.bpj.2012.03.010
Título revista:Biophysical Journal
Título revista abreviado:Biophys. J.
ISSN:00063495
CODEN:BIOJA
CAS:alpha synuclein, 154040-18-3; Rhodamines; alpha-Synuclein
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00063495_v102_n7_p1598_Roberti

Referencias:

  • Dohm, C.P., Kermer, P., Bähr, M., Aggregopathy in neurodegenerative diseases: Mechanisms and therapeutic implication (2008) Neurodegener. Dis., 5, pp. 321-338
  • Uversky, V.N., α-Synuclein misfolding and neurodegenerative diseases (2008) Curr. Protein Pept. Sci., 9, pp. 507-540
  • Uversky, V.N., Mysterious oligomerization of the amyloidogenic proteins (2010) FEBS J., 277, pp. 2940-2953
  • Stefani, M., Protein aggregation diseases: Toxicity of soluble prefibrillar aggregates and their clinical significance (2010) Methods Mol. Biol., 648, pp. 25-41
  • Morris, A.M., Watzky, M.A., Finke, R.G., Protein aggregation kinetics, mechanism, and curve-fitting: A review of the literature (2009) Biochim. Biophys. Acta, 1794, pp. 375-397
  • Malkus, K.A., Tsika, E., Ischiropoulos, H., Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: How neurons are lost in the Bermuda triangle (2009) Mol. Neurodegener., 4, p. 24
  • Seshadri, S., Oberg, K.A., Uversky, V.N., Mechanisms and consequences of protein aggregation: The role of folding intermediates (2009) Curr. Protein Pept. Sci., 10, pp. 456-463
  • Fauerbach, J.A., Yushchenko, S., Jares-Erijman, E.A., Supramolecular non-amyloid intermediates in the early stages of α-synuclein aggregation (2012) Biophys. J., 102, pp. 1127-1136
  • Van Raaij, M.E., Segers-Nolten, I.M., Subramaniam, V., Quantitative morphological analysis reveals ultrastructural diversity of amyloid fibrils from α-synuclein mutants (2006) Biophys. J., 91, pp. 96-L98
  • Hoyer, W., Cherny, D., Jovin, T.M., Rapid self-assembly of α-synuclein observed by in situ atomic force microscopy (2004) J. Mol. Biol., 340, pp. 127-139
  • Sweers, K., Van Der Werf, K., Subramaniam, V., Nanomechanical properties of α-synuclein amyloid fibrils: A comparative study by nanoindentation, harmonic force microscopy, and Peakforce QNM (2011) Nanoscale Res. Lett., 6, p. 270
  • Munishkina, L.A., Fink, A.L., Fluorescence as a method to reveal structures and membrane-interactions of amyloidogenic proteins (2007) Biochim. Biophys. Acta, 1768, pp. 1862-1885
  • Bertoncini, C.W., Celej, M.S., Small molecule fluorescent probes for the detection of amyloid self-assembly in vitro and in vivo (2011) Curr. Protein Pept. Sci., 12, pp. 205-220
  • Lindgren, M., Hammarström, P., Amyloid oligomers: Spectroscopic characterization of amyloidogenic protein states (2010) FEBS J., 277, pp. 1380-1388
  • Kaminski Schierle, G.S., Bertoncini, C.W., Kaminski, C.F., A FRET sensor for non-invasive imaging of amyloid formation in vivo (2011) Chem. Phys. Chem., 12, pp. 673-680
  • Van Ham, T.J., Esposito, A., Bertoncini, C.W., Towards multiparametric fluorescent imaging of amyloid formation: Studies of a YFP model of α-synuclein aggregation (2010) J. Mol. Biol., 395, pp. 627-642
  • Roberti, M.J., Bertoncini, C.W., Jovin, T.M., Fluorescence imaging of amyloid formation in living cells by a functional, tetracysteine-tagged α-synuclein (2007) Nat. Methods, 4, pp. 345-351
  • Thirunavukkuarasu, S., Jares-Erijman, E.A., Jovin, T.M., Multiparametric fluorescence detection of early stages in the amyloid protein aggregation of pyrene-labeled α-synuclein (2008) J. Mol. Biol., 378, pp. 1064-1073
  • Roberti, M.J., Morgan, M., Jares-Erijman, E.A., Quantum dots as ultrasensitive nanoactuators and sensors of amyloid aggregation in live cells (2009) J. Am. Chem. Soc., 131, pp. 8102-8107
  • Yushchenko, D.A., Fauerbach, J.A., Jovin, T.M., Fluorescent ratiometric MFC probe sensitive to early stages of α-synuclein aggregation (2010) J. Am. Chem. Soc., 132, pp. 7860-7861
  • Roberti, M.J., Giordano, L., Jares-Erijman, E.A., FRET imaging by k(t)/k(f) (2011) Chem. Phys. Chem., 12, pp. 563-566
  • Roberti, M.J., Jovin, T.M., Jares-Erijman, E.A., Confocal fluorescence anisotropy and FRAP imaging of α-synuclein amyloid aggregates in living cells (2011) PLoS ONE, 6, p. 23338
  • Hell, S.W., Far-field optical nanoscopy (2007) Science, 316, pp. 1153-1158
  • Hell, S.W., Microscopy and its focal switch (2009) Nat. Methods, 6, pp. 24-32
  • Patterson, G., Davidson, M., Lippincott-Schwartz, J., Superresolution imaging using single-molecule localization (2010) Annu. Rev. Phys. Chem., 61, pp. 345-367
  • Betzig, E., Patterson, G.H., Hess, H.F., Imaging intracellular fluorescent proteins at nanometer resolution (2006) Science, 313, pp. 1642-1645
  • Rust, M.J., Bates, M., Zhuang, X., Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) (2006) Nat. Methods, 3, pp. 793-795
  • Fölling, J., Bossi, M., Hell, S.W., Fluorescence nanoscopy by ground-state depletion and single-molecule return (2008) Nat. Methods, 5, pp. 943-945
  • Fernández-Suárez, M., Ting, A.Y., Fluorescent probes for super-resolution imaging in living cells (2008) Nat. Rev. Mol. Cell Biol., 9, pp. 929-943
  • Outeiro, T.F., Putcha, P., McLean, P.J., Formation of toxic oligomeric α-synuclein species in living cells (2008) PLoS One, 3, p. 1867
  • Thompson, M.A., Biteen, J.S., Moerner, W.E., Molecules and methods for super-resolution imaging (2010) Methods Enzymol., 475, pp. 27-59
  • Vogelsang, J., Cordes, T., Tinnefeld, P., Intrinsically resolution enhancing probes for confocal microscopy (2010) Nano Lett., 10, pp. 672-679
  • Fölling, J., Belov, V., Hell, S.W., Photochromic rhodamines provide nanoscopy with optical sectioning (2007) Angew. Chem. Int. Ed. Engl., 46, pp. 6266-6270
  • Bossi, M., Fölling, J., Hell, S.W., Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species (2008) Nano Lett., 8, pp. 2463-2468
  • Belov, V.N., Bossi, M.L., Hell, S.W., Rhodamine spiroamides for multicolor single-molecule switching fluorescent nanoscopy (2009) Chemistry, 15, pp. 10762-10776
  • Bates, M., Huang, B., Zhuang, X., Multicolor super-resolution imaging with photo-switchable fluorescent probes (2007) Science, 317, pp. 1749-1753
  • Vogelsang, J., Steinhauer, C., Tinnefeld, P., Make them blink: Probes for super-resolution microscopy (2010) Chem. Phys. Chem., 11, pp. 2475-2490
  • Egner, A., Geisler, C., Hell, S.W., Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters (2007) Biophys. J., 93, pp. 3285-3290
  • Heise, H., Hoyer, W., Baldus, M., Molecular-level secondary structure, polymorphism, and dynamics of full-length α-synuclein fibrils studied by solid-state NMR (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 15871-15876
  • Fernández, C.O., Hoyer, W., Jovin, T.M., NMR of α-synuclein-polyamine complexes elucidates the mechanism and kinetics of induced aggregation (2004) EMBO J., 23, pp. 2039-2046
  • Antony, T., Hoyer, W., Subramaniam, V., Cellular polyamines promote the aggregation of α-synuclein (2003) J. Biol. Chem., 278, pp. 3235-3240
  • Ahmad, M.F., Ramakrishna, T., Rao, ChM., Fibrillogenic and non-fibrillogenic ensembles of SDS-bound human α-synuclein (2006) J. Mol. Biol., 364, pp. 1061-1072
  • Ban, T., Morigaki, K., Goto, Y., Real-time and single fibril observation of the formation of amyloid β spherulitic structures (2006) J. Biol. Chem., 281, pp. 33677-33683
  • Fölling, J., Belov, V., Hell, S.W., Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers (2008) Chem. Phys. Chem., 9, pp. 321-326
  • Andersen, C.B., Yagi, H., Rischel, C., Branching in amyloid fibril growth (2009) Biophys. J., 96, pp. 1529-1536
  • Ban, T., Yamaguchi, K., Goto, Y., Direct observation of amyloid fibril growth, propagation, and adaptation (2006) Acc. Chem. Res., 39, pp. 663-670
  • Kaminski Schierle, G.S., Van De Linde, S., Kaminski, C.F., In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging (2011) J. Am. Chem. Soc., 133, pp. 12902-12905
  • Duim, W.C., Chen, B., Moerner, W.E., Sub-diffraction imaging of huntingtin protein aggregates by fluorescence blink-microscopy and atomic force microscopy (2011) Chem. Phys. Chem., 12, pp. 2387-2390
  • Lee, H.J., Lee, S.J., Characterization of cytoplasmic α-synuclein aggregates. Fibril formation is tightly linked to the inclusion-forming process in cells (2002) J. Biol. Chem., 277, pp. 48976-48983
  • Ding, T.T., Lee, S.J., Lansbury, Jr.P.T., Annular α-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes (2002) Biochemistry, 41, pp. 10209-10217
  • Xu, S.H., Aggregation drives "misfolding" in protein amyloid fiber formation (2007) Amyloid, 14, pp. 119-131
  • Engelender, S., Kaminsky, Z., Ross, C.A., Synphilin-1 associates with α-synuclein and promotes the formation of cytosolic inclusions (1999) Nat. Genet., 22, pp. 110-114
  • Kramer, M.L., Schulz-Schaeffer, W.J., Presynaptic α-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies (2007) J. Neurosci., 27, pp. 1405-1410
  • Scott, D.A., Tabarean, I., Roy, S., A pathologic cascade leading to synaptic dysfunction in α-synuclein-induced neurodegeneration (2010) J. Neurosci., 30, pp. 8083-8095
  • Jones, S.A., Shim, S.H., Zhuang, X., Fast, three-dimensional super-resolution imaging of live cells (2011) Nat. Methods, 8, pp. 499-508
  • Spagnuolo, C.C., Vermeij, R.J., Jares-Erijman, E.A., Improved photostable FRET-competent biarsenical-tetracysteine probes based on fluorinated fluoresceins (2006) J. Am. Chem. Soc., 128, pp. 12040-12041

Citas:

---------- APA ----------
Roberti, M.J., Fölling, J., Celej, M.S., Bossi, M., Jovin, T.M. & Jares-Erijman, E.A. (2012) . Imaging nanometer-sized α-synuclein aggregates by superresolution fluorescence localization microscopy. Biophysical Journal, 102(7), 1598-1607.
http://dx.doi.org/10.1016/j.bpj.2012.03.010
---------- CHICAGO ----------
Roberti, M.J., Fölling, J., Celej, M.S., Bossi, M., Jovin, T.M., Jares-Erijman, E.A. "Imaging nanometer-sized α-synuclein aggregates by superresolution fluorescence localization microscopy" . Biophysical Journal 102, no. 7 (2012) : 1598-1607.
http://dx.doi.org/10.1016/j.bpj.2012.03.010
---------- MLA ----------
Roberti, M.J., Fölling, J., Celej, M.S., Bossi, M., Jovin, T.M., Jares-Erijman, E.A. "Imaging nanometer-sized α-synuclein aggregates by superresolution fluorescence localization microscopy" . Biophysical Journal, vol. 102, no. 7, 2012, pp. 1598-1607.
http://dx.doi.org/10.1016/j.bpj.2012.03.010
---------- VANCOUVER ----------
Roberti, M.J., Fölling, J., Celej, M.S., Bossi, M., Jovin, T.M., Jares-Erijman, E.A. Imaging nanometer-sized α-synuclein aggregates by superresolution fluorescence localization microscopy. Biophys. J. 2012;102(7):1598-1607.
http://dx.doi.org/10.1016/j.bpj.2012.03.010