Artículo

Muñoz, M.W.; Battistone, M.A.; Carvajal, G.; Maldera, J.A.; Curci, L.; Torres, P.; Lombardo, D.; Pignataro, O.P.; Da Ros, V.G.; Cuasnicu, P.S. "Influence of the genetic background on the reproductive phenotype of mice lacking Cysteine-RIch Secretory Protein 1 (CRISP1)" (2018) Biology of Reproduction. 99(2)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Epididymal sperm protein CRISP1 has the ability to both regulate murine CatSper, a key sperm calcium channel, and interact with egg-binding sites during fertilization. In spite of its relevance for sperm function, Crisp1-/- mice are fertile. Considering that phenotypes can be influenced by the genetic background, in the present work mice from the original mixed Crisp1-/- colony (129/SvEv∗C57BL/6) were backcrossed onto the C57BL/6 strain for subsequent analysis of their reproductive phenotype. Whereas fertility and fertilization rates of C57BL/6 Crisp1-/- males did not differ from those reported for mice from the mixed background, several sperm functional parameters were clearly affected by the genetic background. Crisp1-/- sperm from the homogeneous background exhibited defects in both the progesterone-induced acrosome reaction and motility not observed in the mixed background, and normal rather than reduced protein tyrosine phosphorylation. Additional studies revealed a significant decrease in sperm hyperactivation as well as in cAMP and protein kinase A (PKA) substrate phosphorylation levels in sperm from both colonies. The finding that exposure of mutant sperm to a cAMP analog and phosphodiesterase inhibitor overcame the sperm functional defects observed in each colony indicated that a common cAMP-PKA signaling defect led to different phenotypes depending on the genetic background. Altogether, our observations indicate that the phenotype of CRISP1 null males is modulated by the genetic context and reveal new roles for the protein in both the functional events and signaling pathways associated to capacitation. © 2018 Oxford University Press. All rights reserved.

Registro:

Documento: Artículo
Título:Influence of the genetic background on the reproductive phenotype of mice lacking Cysteine-RIch Secretory Protein 1 (CRISP1)
Autor:Muñoz, M.W.; Battistone, M.A.; Carvajal, G.; Maldera, J.A.; Curci, L.; Torres, P.; Lombardo, D.; Pignataro, O.P.; Da Ros, V.G.; Cuasnicu, P.S.
Filiación:Instituto de Biología y Medicina Experimental (IByME-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
Instituto de Investigación y Tecnología en Reproducción Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, C1427CWO, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
Palabras clave:Capacitation; Fertilization; Signal transduction; Sperm; calcium ion; cyclic AMP; cyclic AMP dependent protein kinase; cysteine rich secretory protein 1; secretory protein; unclassified drug; acrosome; acrosome reaction; animal cell; animal experiment; animal model; Article; calcium cell level; controlled study; embryo; enzyme phosphorylation; female; fertility; fertilization; flow cytometry; genetic background; in vitro study; male; mouse; nonhuman; oocyte; phenotype; priority journal; protein phosphorylation; signal transduction; sperm; spermatozoon capacitation; Western blotting; zona pellucida
Año:2018
Volumen:99
Número:2
DOI: http://dx.doi.org/10.1093/biolre/ioy048/4898003
Título revista:Biology of Reproduction
Título revista abreviado:Biol. Reprod.
ISSN:00063363
CODEN:BIREB
CAS:calcium ion, 14127-61-8; cyclic AMP, 60-92-4; cyclic AMP dependent protein kinase
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00063363_v99_n2_p_Munoz

Referencias:

  • Visconti, P.E., Bailey, J.L., Moore, G.D., Pan, D., Olds-Clarke, P., Kopf, G.S., Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation (1995) Development, 121, pp. 1129-1137
  • Visconti, P.E., Moore, G.D., Bailey, J.L., Leclerc, P., Connors, S.A., Pan, D., Olds-Clarke, P., Kopf, G.S., Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway (1995) Development, 121, pp. 1139-1150
  • Ruknudin, A., Silver, I.A., Ca2+ uptake during capacitation of mouse spermatozoa and the effect of an anion transport inhibitor on Ca2+ uptake (1990) Mol Reprod Dev, 26, pp. 63-68
  • Da Ros, V.G., Muñoz, M.W., Battistone, M.A., Brukman, N.G., Carvajal, G., Curci, L., Gómez-Elias, M.D., Cuasnicu, P.S., From the epididymis to the egg: Participation of CRISP proteins in mammalian fertilization (2015) Asian J Androl, 17, pp. 711-715
  • Gibbs, G.M., Roelants, K., O'Bryan, M.K., The CAP superfamily: Cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins - Roles in reproduction, cancer, and immune defense (2008) Endocr Rev, 29, pp. 865-897
  • Guo, M., Teng, M., Niu, L., Liu, Q., Huang, Q., Hao, Q., Crystal structure of the cysteine-rich secretory protein stecrisp reveals that the cysteine-rich domain has a K+ channel inhibitor-like fold (2005) J Biol Chem, 280, pp. 12405-12412
  • Gibbs, G.M., Scanlon, M.J., Swarbrick, J., Curtis, S., Gallant, E., Dulhunty, A.F., O'Bryan, M.K., The cysteine-rich secretory protein domain of Tpx-1 is related to ion channel toxins and regulates ryanodine receptor Ca2+ signaling (2006) J Biol Chem, 281, pp. 4156-4163
  • Cameo, M.S., Blaquier, J.A., Androgen-controlled specific proteins in rat epididymis (1976) J Endocrinol, 69, pp. 47-55
  • Garberi, J.C., Kohane, A.C., Cameo, M.S., Blaquier, J.A., Isolation and characterization of specific rat epididymal proteins (1979) Mol Cell Endocrinol, 13, pp. 73-82
  • Garberi, J.C., Fontana, J.D., Blaquier, J.A., Carbohydrate composition of specific rat epididymal protein (1982) Int J Androl, 5, pp. 619-626
  • Kohane, A.C., González Echeverría, F.M., Piñeiro, L., Blaquier, J.A., Interaction of proteins of epididymal origin with spermatozoa (1980) Biol Reprod, 23, pp. 737-742
  • Cohen, D.J., Rochwerger, L., Ellerman, D.A., Morgenfeld, M.M., Busso, D., Cuasnicú, P.S., Relationship between the association of rat epididymal protein "DE" With spermatozoa and the behavior and function of the protein (2000) Mol Reprod Dev, 56, pp. 180-188
  • Roberts, K.P., Wamstad, J.A., Ensrud, K.M., Hamilton, D.W., Inhibition of capacitation-associated tyrosine phosphorylation signaling in rat sperm by epididymal protein Crisp-1 (2003) Biol Reprod, 69, pp. 572-581
  • Busso, D., Cohen, D.J., Maldera, J.A., Dematteis, A., Cuasnicu, P.S., A novel function for CRISP1 in rodent fertilization: Involvement in sperm-zona pellucida interaction (2007) Biol Reprod, 77, pp. 848-854
  • Cohen, D.J., Ellerman, D.A., Cuasnicú, P.S., Mammalian sperm-egg fusion: Evidence that epididymal protein de plays a role in mouse gamete fusion (2000) Biol Reprod, 63, pp. 462-468
  • Rochwerger, L., Cohen, D.J., Cuasnicú, P.S., Mammalian sperm-egg fusion: The rat egg has complementary sites for a sperm protein that mediates gamete fusion (1992) Dev Biol, 153, pp. 83-90
  • Da Ros, V.G., Maldera, J.A., Willis, W.D., Cohen, D.J., Goulding, E.H., Gelman, D.M., Rubinstein, M., Cuasnicu, P.S., Impaired sperm fertilizing ability in mice lacking Cysteine-RIch Secretory Protein 1 (CRISP1) (2008) Dev Biol, 320, pp. 12-18
  • Ernesto, J.I., Weigel Muñoz, M., Battistone, M.A., Vasen, G., Martínez-López, P., Orta, G., Figueiras-Fierro, D., Darszon, A., CRISP1 as a novel CatSper regulator that modulates sperm motility and orientation during fertilization (2015) J Cell Biol, 210, pp. 1213-1224
  • Ren, D., Navarro, B., Perez, G., Jackson, A.C., Hsu, S., Shi, Q., Tilly, J.L., Clapham, D.E., A sperm ion channel required for sperm motility and male fertility (2001) Nature, 413, pp. 603-609
  • Brenker, C., Goodwin, N., Weyand, I., Kashikar, N.D., Naruse, M., Krahling, M., Muller, A., Strunker, T., The CatSper channel: A polymodal chemosensor in human sperm (2012) Embo J, 31, pp. 1654-1665
  • Smith, J.F., Syritsyna, O., Fellous, M., Serres, C., Mannowetz, N., Kirichok, Y., Lishko, P.V., Disruption of the principal, progesterone-activated sperm Ca2+ channel in a CatSper2-deficient infertile patient (2013) Proc Natl Acad Sci U S A, 110, pp. 6823-6828
  • Okabe, M., Mechanisms of fertilization elucidated by gene-manipulated animals (2015) Asian J Androl, 17, p. 646
  • Montagutelli, X., Effect of the genetic background on the phenotype of mouse mutations (2000) J Am Soc Nephrol, 11, pp. S101-S105
  • Erickson, R.P., Mouse models of human genetic disease: Which mouse is more like a man? (1996) Bioessays, 18, pp. 993-998
  • Rozmahel, R., Wilschanski, M., Matin, A., Plyte, S., Oliver, M., Auerbach, W., Moore, A., Tsui, L.C., Modulation of disease severity in cystic fibrosis transmembrane conductance regulator deficient mice by a secondary genetic factor (1996) Nat Genet, 12, pp. 280-287
  • Rubinstein, E., Ziyyat, A., Prenant, M., Wrobel, E., Wolf, J.P., Levy, S., Le Naour, F., Boucheix, C., Reduced fertility of female mice lacking CD81 (2006) Dev Biol, 290, pp. 351-358
  • Maecker, H.T., Levy, S., Normal lymphocyte development but delayed humoral immune response in CD81-null mice (1997) J Exp Med, 185, pp. 1505-1510
  • Nayernia, K., Adham, I.M., Burkhardt-Göttges, E., Neesen, J., Rieche, M., Wolf, S., Sancken, U., Engel, W., Asthenozoospermia in mice with targeted deletion of the sperm mitochondrion-associated cysteine-rich protein (Smcp) gene (2002) Mol Cell Biol, 22, pp. 3046-3052
  • Odet, F., Gabel, S., London, R.E., Goldberg, E., Eddy, E.M., Glycolysis and mitochondrial respiration in mouse LDHC-null sperm (2013) Biol Reprod, 88, p. 95
  • Carlson, A.E., Westenbroek, R.E., Quill, T., Ren, D., Clapham, D.E., Hille, B., Garbers, D.L., Babcock, D.F., CatSper1 required for evoked Ca2+ entry and control of flagellar function in sperm (2003) Proc Natl Acad Sci U S A, 100, pp. 14864-14868
  • Fraser, L.R., Drury, L.M., The relationship between sperm concentration and fertilization in vitro of mouse eggs (1975) Biol Reprod, 13, pp. 513-518
  • Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685
  • Porambo, J.R., Salicioni, A.M., Visconti, P.E., Platt, M.D., Sperm phosphoproteomics: Historical perspectives and current methodologies (2012) Expert Rev Proteomics, 9, pp. 533-548
  • Vasen, G., Battistone, M.A., Croci, D.O., Brukman, N.G., Weigel Muñoz, M., Stupirski, J.C., Rabinovich, G.A., Cuasnicú, P.S., The galectin-1-glycan axis controls sperm fertilizing capacity by regulating sperm motility and membrane hyperpolarization (2015) FASEB J, 29, pp. 4189-4200
  • Bray, C., Son, J.-H., Kumar, P., Meizel, S., Mice deficient in CHRNA7, a subunit of the nicotinic acetylcholine receptor, produce sperm with impaired motility (2005) Biol Reprod, 73, pp. 807-814
  • Nicolson, G.L., Yanagimachi, R., Yanagimachi, H., Ultrastructural localization of lectin-binding sites on the zonae pellucidae and plasma membranes of mammalian eggs (1975) J Cell Biol, 66, pp. 263-274
  • Brukman, N.G., Miyata, H., Torres, P., Lombardo, D., Caramelo, J.J., Ikawa, M., Da Ros, V.G., Cuasnicú, P.S., Fertilization defects in sperm from Cysteine-rich secretory protein 2 (Crisp2) knockout mice: Implications for fertility disorders (2016) Mol Hum Reprod, 22, pp. 240-251
  • Moore, G.D., Ayabe, T., Visconti, P.E., Schultz, R.M., Kopf, G.S., Roles of heterotrimeric and monomeric G proteins in sperm-induced activation of mouse eggs (1994) Development, 120, pp. 3313-3323
  • Del Punta, K., Charreau, E.H., Pignataro, O.P., Nitric oxide inhibits Leydig cell steroidogenesis (1996) Endocrinology, 137, pp. 5337-5343
  • Alonso, G.D., Schoijet, A.C., Torres, H.N., Flawiá, M.M., TcrPDEA1 a cAMP-specific phosphodiesterase with atypical pharmacological properties from Trypanosoma cruzi (2007) Mol Biochem Parasitol, 152, pp. 72-79
  • Cohen, D.J., Maldera, J.A., Vasen, G., Ernesto, J.I., Muñoz, M.W., Battistone, M.A., Cuasnicú, P.S., Epididymal protein CRISP1 plays different roles during the fertilization process (2011) J Androl, 32, pp. 672-678
  • Navarrete, F.A., García-Vázquez, F.A., Alvau, A., Escoffier, J., Krapf, D., Sánchez-Cárdenas, C., Salicioni, A.M., Visconti, P.E., Biphasic role of calcium in mouse sperm capacitation signaling pathways (2015) J Cell Physiol, 230, pp. 1758-1769
  • Miyata, H., Satouh, Y., Mashiko, D., Muto, M., Nozawa, K., Shiba, K., Fujihara, Y., Ikawa, M., Sperm calcineurin inhibition prevents mouse fertility with implications for male contraceptive (2015) Science, 350, pp. 442-445
  • Visconti, P.E., Krapf, D., De La Vega-Beltrán, J.L., Acevedo, J.J., Darszon, A., Ion channels, phosphorylation and mammalian sperm capacitation (2011) Asian J Androl, 13, pp. 395-405
  • Buffone, M.G., Wertheimer, E.V., Visconti, P.E., Krapf, D., Central role of soluble adenylyl cyclase and cAMP in sperm physiology (2014) Biochim Biophys Acta, 1842, pp. 2610-2620
  • Chen, Y., Cann, M.J., Litvin, T.N., Iourgenko, V., Sinclair, M.L., Levin, L.R., Buck, J., Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor (2000) Science (80- ), 289, pp. 625-628
  • Gibbs, G.M., Orta, G., Reddy, T., Koppers, A.J., Martínez-López, P., De La Vega-Beltràn, J.L., Lo, J.C.Y., O'Bryan, M.K., Cysteine-rich secretory protein 4 is an inhibitor of transient receptor potential M8 with a role in establishing sperm function (2011) Proc Natl Acad Sci U S A, 108, pp. 7034-7039
  • Turunen, H.T., Sipila, P., Krutskikh, A., Toivanen, J., Mankonen, H., Hamalainen, V., Bjorkgren, I., Poutanen, M., Loss of cysteine-rich secretory protein 4 (Crisp4) leads to deficiency in sperm-zona pellucida interaction in mice (2012) Biol Reprod, 86, pp. 1-8
  • Muro, Y., Hasuwa, H., Isotani, A., Miyata, H., Yamagata, K., Ikawa, M., Yanagimachi, R., Okabe, M., Behavior of mouse spermatozoa in the female reproductive tract from soon after mating to the beginning of fertilization (2016) Biol Reprod, 94, p. 80
  • La Spina, F.A., Puga Molina, L.C., Romarowski, A., Vitale, A.M., Falzone, T.L., Krapf, D., Hirohashi, N., Buffone, M.G., Mouse sperm begin to undergo acrosomal exocytosis in the upper isthmus of the oviduct (2016) Dev Biol, 411, pp. 172-182
  • Hino, T., Muro, Y., Tamura-Nakano, M., Okabe, M., Tateno, H., Yanagimachi, R., The behavior and acrosomal status of mouse spermatozoa in vitro, and within the oviduct during fertilization after natural mating (2016) Biol Reprod, 95, p. 50
  • Yanagimachi, R., Mammalian fertilization (1994) The Physiology of Reproduction, pp. 189-317. , E.Knobil and J.D.Neill (ed.). second
  • Westmuckett, A.D., Nguyen, E.B., Herlea-Pana, O.M., Alvau, A., Salicioni, A.M., Moore, K.L., Impaired sperm maturation in RNASE9 knockout mice (2014) Biol Reprod, 90, p. 120
  • Carlson, A.E., Quill, T.A., Westenbroek, R.E., Schuh, S.M., Hille, B., Babcock, D.F., Identical phenotypes of CatSper1 and CatSper2 null sperm (2005) J Biol Chem, 280, pp. 32238-32244
  • Chung, J.-J., Shim, S.-H., Everley, R.A., Gygi, S.P., Zhuang, X., Clapham, D.E., Structurally distinct Ca(2+) signaling domains of sperm flagella orchestrate tyrosine phosphorylation and motility (2014) Cell, 157, pp. 808-822
  • Gallati, S., Disease-modifying genes and monogenic disorders: Experience in cystic fibrosis (2014) Appl Clin Genet, 7, pp. 133-146
  • Riordan, J.D., Nadeau, J.H., From peas to disease: Modifier genes, network resilience, and the genetics of health (2017) Am J Hum Genet, 101, pp. 177-191
  • Branham, M.T., Mayorga, L.S., Tomes, C.N., Calcium-induced acrosomal exocytosis requires cAMP acting through a protein kinase A-independent, Epac-mediated pathway (2006) J Biol Chem, 281, pp. 8656-8666
  • Romarowski, A., Battistone, M.A., La Spina, F.A., Puga Molina, L.D.C., Luque, G.M., Vitale, A.M., Cuasnicu, P.S., Buffone, M.G., PKA-dependent phosphorylation of LIMK1 and Cofilin is essential for mouse sperm acrosomal exocytosis (2015) Dev Biol, 405, pp. 237-249
  • Vadnais, M.L., Aghajanian, H.K., Lin, A., Gerton, G.L., Signaling in sperm: Toward a molecular understanding of the acquisition of sperm motility in the mouse epididymis1 (2013) Biol Reprod, 89, pp. 1-10
  • Alvau, A., Battistone, M.A., Gervasi, M.G., Navarrete, F.A., Xu, X., Sánchez-Cárdenas, C., De La Vega-Beltran, J.L., Salicioni, A.M., The tyrosine kinase FER is responsible for the capacitation-associated increase in tyrosine phosphorylation in murine sperm (2016) Development, 143, pp. 2325-2333
  • Battistone, M.A., Alvau, A., Salicioni, A.M., Visconti, P.E., Da Ros, V.G., Cuasnicú, P.S., Evidence for the involvement of proline-rich tyrosine kinase 2 in tyrosine phosphorylation downstream of protein kinase A activation during human sperm capacitation (2014) Mol Hum Reprod, 20, pp. 1054-1066
  • Visconti, P.E., Johnson, L.R., Oyaski, M., Fornés, M., Moss, S.B., Gerton, G.L., Kopf, G.S., Regulation, localization, and anchoring of protein kinase a subunits during mouse sperm capacitation (1997) Dev Biol, 192, pp. 351-363
  • Zippin, J.H., Chen, Y., Nahirney, P., Kamenetsky, M., Wuttke, M.S., Fischman, D.A., Levin, L.R., Buck, J., Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains (2003) FASEB J, 17, pp. 82-84
  • Baxendale, R.W., Fraser, L.R., Mammalian sperm phosphodiesterases and their involvement in receptor-mediated cell signaling important for capacitation (2005) Mol Reprod Dev, 71, pp. 495-508
  • Valsecchi, F., Konrad, C., D'Aurelio, M., Ramos-Espiritu, L.S., Stepanova, A., Burstein, S.R., Galkin, A., Manfredi, G., Distinct intracellular sAC-cAMP domains regulate ER Ca2+ signaling and OXPHOS function (2017) J Cell Sci, 130, pp. 3713-3727
  • Wertheimer, E., Krapf, D., De La Vega-Beltran, J.L., Sánchez-Cárdenas, C., Navarrete, F., Haddad, D., Escoffier, J., Darszon, A., Compartmentalization of distinct cAMP signaling pathways in mammalian sperm (2013) J Biol Chem, 288, pp. 35307-35320

Citas:

---------- APA ----------
Muñoz, M.W., Battistone, M.A., Carvajal, G., Maldera, J.A., Curci, L., Torres, P., Lombardo, D.,..., Cuasnicu, P.S. (2018) . Influence of the genetic background on the reproductive phenotype of mice lacking Cysteine-RIch Secretory Protein 1 (CRISP1). Biology of Reproduction, 99(2).
http://dx.doi.org/10.1093/biolre/ioy048/4898003
---------- CHICAGO ----------
Muñoz, M.W., Battistone, M.A., Carvajal, G., Maldera, J.A., Curci, L., Torres, P., et al. "Influence of the genetic background on the reproductive phenotype of mice lacking Cysteine-RIch Secretory Protein 1 (CRISP1)" . Biology of Reproduction 99, no. 2 (2018).
http://dx.doi.org/10.1093/biolre/ioy048/4898003
---------- MLA ----------
Muñoz, M.W., Battistone, M.A., Carvajal, G., Maldera, J.A., Curci, L., Torres, P., et al. "Influence of the genetic background on the reproductive phenotype of mice lacking Cysteine-RIch Secretory Protein 1 (CRISP1)" . Biology of Reproduction, vol. 99, no. 2, 2018.
http://dx.doi.org/10.1093/biolre/ioy048/4898003
---------- VANCOUVER ----------
Muñoz, M.W., Battistone, M.A., Carvajal, G., Maldera, J.A., Curci, L., Torres, P., et al. Influence of the genetic background on the reproductive phenotype of mice lacking Cysteine-RIch Secretory Protein 1 (CRISP1). Biol. Reprod. 2018;99(2).
http://dx.doi.org/10.1093/biolre/ioy048/4898003