Artículo

Borkosky, S.S.; Camporeale, G.; Chemes, L.B.; Risso, M.; Noval, M.G.; Sánchez, I.E.; Alonso, L.G.; De Prat Gay, G. "Hidden Structural Codes in Protein Intrinsic Disorder" (2017) Biochemistry. 56(41):5560-5569
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Intrinsic disorder is a major structural category in biology, accounting for more than 30% of coding regions across the domains of life, yet consists of conformational ensembles in equilibrium, a major challenge in protein chemistry. Anciently evolved papillomavirus genomes constitute an unparalleled case for sequence to structure-function correlation in cases in which there are no folded structures. E7, the major transforming oncoprotein of human papillomaviruses, is a paradigmatic example among the intrinsically disordered proteins. Analysis of a large number of sequences of the same viral protein allowed for the identification of a handful of residues with absolute conservation, scattered along the sequence of its N-terminal intrinsically disordered domain, which intriguingly are mostly leucine residues. Mutation of these led to a pronounced increase in both α-helix and β-sheet structural content, reflected by drastic effects on equilibrium propensities and oligomerization kinetics, and uncovers the existence of local structural elements that oppose canonical folding. These folding relays suggest the existence of yet undefined hidden structural codes behind intrinsic disorder in this model protein. Thus, evolution pinpoints conformational hot spots that could have not been identified by direct experimental methods for analyzing or perturbing the equilibrium of an intrinsically disordered protein ensemble. © 2017 American Chemical Society.

Registro:

Documento: Artículo
Título:Hidden Structural Codes in Protein Intrinsic Disorder
Autor:Borkosky, S.S.; Camporeale, G.; Chemes, L.B.; Risso, M.; Noval, M.G.; Sánchez, I.E.; Alonso, L.G.; De Prat Gay, G.
Filiación:Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Av. Patricias Argentinas 435, CABA, Buenos Aires, 1405, Argentina
Department of Microbiology, New York University, Alexandria Center for Life Sciences, New York, NY 10016, United States
Protein Physiology Laboratory, Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Amino acids; Biology; Codes (symbols); Conformations; Conformational ensemble; Experimental methods; Human papilloma virus; Intrinsic disorder; Intrinsically disordered proteins; Protein intrinsic disorders; Structural elements; Structure-function correlation; Proteins; leucine; oncoprotein; viral protein; intrinsically disordered protein; leucine; oncogene protein E7, Human papillomavirus type 16; peptide fragment; protein E7; recombinant protein; virus DNA; alpha helix; amino terminal sequence; Article; beta sheet; controlled study; correlational study; mutation; nonhuman; nuclear magnetic resonance; oligomerization; Papillomaviridae; priority journal; protein analysis; protein conformation; protein domain; protein folding; protein function; protein intrinsic disorder; protein structure; residue analysis; virus genome; amino acid sequence; amino acid substitution; chemistry; comparative study; conserved sequence; gene deletion; genetics; Human papillomavirus type 16; metabolism; molecular model; nucleotide sequence; pH; point mutation; protein stability; sequence alignment; site directed mutagenesis; Amino Acid Sequence; Amino Acid Substitution; Base Sequence; Conserved Sequence; DNA, Viral; Gene Deletion; Human papillomavirus 16; Hydrogen-Ion Concentration; Intrinsically Disordered Proteins; Leucine; Models, Molecular; Mutagenesis, Site-Directed; Papillomavirus E7 Proteins; Peptide Fragments; Point Mutation; Protein Conformation; Protein Conformation, alpha-Helical; Protein Conformation, beta-Strand; Protein Folding; Protein Stability; Recombinant Proteins; Sequence Alignment
Año:2017
Volumen:56
Número:41
Página de inicio:5560
Página de fin:5569
DOI: http://dx.doi.org/10.1021/acs.biochem.7b00721
Título revista:Biochemistry
Título revista abreviado:Biochemistry
ISSN:00062960
CODEN:BICHA
CAS:leucine, 61-90-5, 7005-03-0; DNA, Viral; Intrinsically Disordered Proteins; Leucine; oncogene protein E7, Human papillomavirus type 16; Papillomavirus E7 Proteins; Peptide Fragments; Recombinant Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00062960_v56_n41_p5560_Borkosky

Referencias:

  • Van Der Lee, R., Buljan, M., Lang, B., Weatheritt, R.J., Daughdrill, G.W., Dunker, A.K., Fuxreiter, M., Babu, M.M., Classification of intrinsically disordered regions and proteins (2014) Chem. Rev., 114, pp. 6589-6631
  • Dunker, A.K., Lawson, J.D., Brown, C.J., Williams, R.M., Romero, P., Oh, J.S., Oldfield, C.J., Obradovic, Z., Intrinsically disordered protein (2001) J. Mol. Graphics Modell., 19, pp. 26-59
  • Xue, B., Dunker, A.K., Uversky, V.N., Orderly order in protein intrinsic disorder distribution: Disorder in 3500 proteomes from viruses and the three domains of life (2012) J. Biomol. Struct. Dyn., 30, pp. 137-149
  • Habchi, J., Tompa, P., Longhi, S., Uversky, V.N., Introducing protein intrinsic disorder (2014) Chem. Rev., 114, pp. 6561-6588
  • Wright, P.E., Dyson, H.J., Intrinsically disordered proteins in cellular signalling and regulation (2015) Nat. Rev. Mol. Cell Biol., 16, pp. 18-29
  • Babu, M.M., The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease (2016) Biochem. Soc. Trans., 44, pp. 1185-1200
  • Sormanni, P., Piovesan, D., Heller, G.T., Bonomi, M., Kukic, P., Camilloni, C., Fuxreiter, M., Vendruscolo, M., Simultaneous quantification of protein order and disorder (2017) Nat. Chem. Biol., 13, pp. 339-342
  • Uversky, V.N., Longhi, S., (2012) Flexible Viruses: Structural Disorder in Viral Proteins, , John Wiley & Sons, Inc. Hoboken, NJ
  • Zur Hausen, H., Papillomaviruses in the causation of human cancers - A brief historical account (2009) Virology, 384, pp. 260-265
  • Moody, C.A., Laimins, L.A., Human papillomavirus oncoproteins: Pathways to transformation (2010) Nat. Rev. Cancer, 10, pp. 550-560
  • Chemes, L.B., Sanchez, I.E., Alonso, L.G., De Prat-Gay, G., Intrinsic disorder in the human papillomavirus E7 protein (2012) Flexible Viruses: Structural Disorder in Viral Proteins, pp. 313-346. , (Uversky, V. N. and Longhi, S. Eds.), John Wiley & Sons, Inc. Hoboken, NJ
  • Munger, K., Phelps, W.C., Bubb, V., Howley, P.M., Schlegel, R., The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes (1989) J. Virol., 63, pp. 4417-4421
  • Alonso, L.G., Chemes, L.B., Cerutti, M.L., Dantur, K.I., De Prat-Gay, G., Biochemical and structure-function analyses of the HPV E7 protein (2012) Small DNA Tumour Viruses, pp. 99-124. , (Gaston, K. Ed.), Caister Academic Press, Norfolk, U.K
  • Chemes, L.B., Glavina, J., Alonso, L.G., Marino-Buslje, C., De Prat-Gay, G., Sanchez, I.E., Sequence evolution of the intrinsically disordered and globular domains of a model viral oncoprotein (2012) PLoS One, 7, p. e47661
  • Pim, D., Banks, L., Interaction of viral oncoproteins with cellular target molecules: Infection with high-risk vs low-risk human papillomaviruses (2010) APMIS, 118, pp. 471-493
  • Alonso, L.G., Garcia-Alai, M.M., Nadra, A.D., Lapena, A.N., Almeida, F.L., Gualfetti, P., Prat-Gay, G.D., High-risk (HPV16) human papillomavirus E7 oncoprotein is highly stable and extended, with conformational transitions that could explain its multiple cellular binding partners (2002) Biochemistry, 41, pp. 10510-10518
  • Garcia-Alai, M.M., Alonso, L.G., De Prat-Gay, G., The N-terminal module of HPV16 E7 is an intrinsically disordered domain that confers conformational and recognition plasticity to the oncoprotein (2007) Biochemistry, 46, pp. 10405-10412
  • Liu, X., Clements, A., Zhao, K., Marmorstein, R., Structure of the human Papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor (2006) J. Biol. Chem., 281, pp. 578-586
  • Ohlenschlager, O., Seiboth, T., Zengerling, H., Briese, L., Marchanka, A., Ramachandran, R., Baum, M., Gorlach, M., Solution structure of the partially folded high-risk human papilloma virus 45 oncoprotein E7 (2006) Oncogene, 25, pp. 5953-5959
  • Alonso, L.G., Garcia-Alai, M.M., Smal, C., Centeno, J.M., Iacono, R., Castano, E., Gualfetti, P., De Prat-Gay, G., The HPV16 E7 viral oncoprotein self-assembles into defined spherical oligomers (2004) Biochemistry, 43, pp. 3310-3317
  • Alonso, L.G., Smal, C., Garcia-Alai, M.M., Chemes, L., Salame, M., De Prat-Gay, G., Chaperone holdase activity of human papillomavirus E7 oncoprotein (2006) Biochemistry, 45, pp. 657-667
  • Dantur, K., Alonso, L., Castano, E., Morelli, L., Centeno-Crowley, J.M., Vighi, S., De Prat-Gay, G., Cytosolic accumulation of HPV16 E7 oligomers supports different transformation routes for the prototypic viral oncoprotein: The amyloid-cancer connection (2009) Int. J. Cancer, 125, pp. 1902-1911
  • Smal, C., Alonso, L.G., Wetzler, D.E., Heer, A., De Prat Gay, G., Ordered self-assembly mechanism of a spherical oncoprotein oligomer triggered by zinc removal and stabilized by an intrinsically disordered domain (2012) PLoS One, 7, p. e36457
  • Chemes, L.B., Glavina, J., Faivovich, J., De Prat-Gay, G., Sanchez, I.E., Evolution of linear motifs within the papillomavirus E7 oncoprotein (2012) J. Mol. Biol., 422, pp. 336-346
  • Parigi, G., Rezaei-Ghaleh, N., Giachetti, A., Becker, S., Fernandez, C., Blackledge, M., Griesinger, C., Luchinat, C., Long-range correlated dynamics in intrinsically disordered proteins (2014) J. Am. Chem. Soc., 136, pp. 16201-16209
  • Ozenne, V., Schneider, R., Yao, M., Huang, J.R., Salmon, L., Zweckstetter, M., Jensen, M.R., Blackledge, M., Mapping the potential energy landscape of intrinsically disordered proteins at amino acid resolution (2012) J. Am. Chem. Soc., 134, pp. 15138-15148
  • Abascal, F., Zardoya, R., Telford, M.J., TranslatorX: Multiple alignment of nucleotide sequences guided by amino acid translations (2010) Nucleic Acids Res., 38, pp. W7-W13
  • Gruber, A.R., Neubock, R., Hofacker, I.L., Washietl, S., The RNAz web server: Prediction of thermodynamically stable and evolutionarily conserved RNA structures (2007) Nucleic Acids Res., 35, pp. W335-W338
  • Noval, M.G., Gallo, M., Perrone, S., Salvay, A.G., Chemes, L.B., De Prat-Gay, G., Conformational dissection of a viral intrinsically disordered domain involved in cellular transformation (2013) PLoS One, 8, p. e72760
  • Chemes, L.B., Camporeale, G., Sanchez, I.E., De Prat-Gay, G., Alonso, L.G., Cysteine-rich positions outside the structural zinc motif of human papillomavirus E7 provide conformational modulation and suggest functional redox roles (2014) Biochemistry, 53, pp. 1680-1696
  • Chemes, L.B., Alonso, L.G., Noval, M.G., De Prat Gay, G., Circular dicroism techniques for the analysis of intrinsicaly disordered proteins and domains (2012) Intrinsically Disordered Protein Analysis, pp. 387-404. , (Uversky, V. N. and Dunker, A. K. Eds.) pp, Springer Protocols, Springer, Dordrecht, The Netherlands
  • Jasanoff, A., Fersht, A.R., Quantitative determination of helical propensities from trifluoroethanol titration curves (1994) Biochemistry, 33, pp. 2129-2135
  • Monsellier, E., Ramazzotti, M., De Laureto, P.P., Tartaglia, G.G., Taddei, N., Fontana, A., Vendruscolo, M., Chiti, F., The distribution of residues in a polypeptide sequence is a determinant of aggregation optimized by evolution (2007) Biophys. J., 93, pp. 4382-4391
  • Fassolari, M., Chemes, L.B., Gallo, M., Smal, C., Sanchez, I.E., De Prat-Gay, G., Minute time scale prolyl isomerization governs antibody recognition of an intrinsically disordered immunodominant epitope (2013) J. Biol. Chem., 288, pp. 13110-13123
  • Li, X., Johansson, C., Cardoso Palacios, C., Mossberg, A., Dhanjal, S., Bergvall, M., Schwartz, S., Eight nucleotide substitutions inhibit splicing to HPV-16 3′-splice site SA3358 and reduce the efficiency by which HPV-16 increases the life span of primary human keratinocytes (2013) PLoS One, 8, p. e72776
  • Grassmann, K., Rapp, B., Maschek, H., Petry, K.U., Iftner, T., Identification of a differentiation-inducible promoter in the E7 open reading frame of human papillomavirus type 16 (HPV-16) in raft cultures of a new cell line containing high copy numbers of episomal HPV-16 DNA (1996) J. Virol., 70, pp. 2339-2349
  • Pace, C.N., Scholtz, J.M., A helix propensity scale based on experimental studies of peptides and proteins (1998) Biophys. J., 75, pp. 422-427
  • Fersht, A.R., Kinetics in protein folding (1998) Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding, pp. 540-570. , (Fersht, A. R. Ed.), Freeman, New York
  • Frieden, C., Protein aggregation processes: In search of the mechanism (2007) Protein Sci., 16, pp. 2334-2344
  • Anfinsen, C.B., Principles that govern the folding of protein chains (1973) Science, 181, pp. 223-230
  • Borysik, A.J., Kovacs, D., Guharoy, M., Tompa, P., Ensemble Methods Enable a New Definition for the Solution to Gas-Phase Transfer of Intrinsically Disordered Proteins (2015) J. Am. Chem. Soc., 137, pp. 13807-13817
  • Tompa, P., Intrinsically disordered proteins: A 10-year recap (2012) Trends Biochem. Sci., 37, pp. 509-516
  • Fersht, A.R., Protein Engineering. in (1998) Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding, pp. 420-449. , (Fersht, A. R. Ed.), Freeman, New York
  • Miller, S., Janin, J., Lesk, A.M., Chothia, C., Interior and surface of monomeric proteins (1987) J. Mol. Biol., 196, pp. 641-656
  • Makhatadze, G.I., Privalov, P.L., Energetics of protein structure (1995) Adv. Protein Chem., 47, pp. 307-425
  • Minor, Jr.D.L., Kim, P.S., Context-dependent secondary structure formation of a designed protein sequence (1996) Nature, 380, pp. 730-734
  • Cordes, M.H., Burton, R.E., Walsh, N.P., McKnight, C.J., Sauer, R.T., An evolutionary bridge to a new protein fold (2000) Nat. Struct. Biol., 7, pp. 1129-1132
  • Oldfield, C.J., Meng, J., Yang, J.Y., Yang, M.Q., Uversky, V.N., Dunker, A.K., Flexible nets: Disorder and induced fit in the associations of p53 and 14-3-3 with their partners (2008) BMC Genomics, 9, p. S1
  • Daggett, V., Fersht, A.R., Is there a unifying mechanism for protein folding? (2003) Trends Biochem. Sci., 28, pp. 18-25
  • Fersht, A.R., Folding pathways and energy landscapes (1998) Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding, pp. 573-611. , (Fersht, A. R. Ed.), Freeman, New York

Citas:

---------- APA ----------
Borkosky, S.S., Camporeale, G., Chemes, L.B., Risso, M., Noval, M.G., Sánchez, I.E., Alonso, L.G.,..., De Prat Gay, G. (2017) . Hidden Structural Codes in Protein Intrinsic Disorder. Biochemistry, 56(41), 5560-5569.
http://dx.doi.org/10.1021/acs.biochem.7b00721
---------- CHICAGO ----------
Borkosky, S.S., Camporeale, G., Chemes, L.B., Risso, M., Noval, M.G., Sánchez, I.E., et al. "Hidden Structural Codes in Protein Intrinsic Disorder" . Biochemistry 56, no. 41 (2017) : 5560-5569.
http://dx.doi.org/10.1021/acs.biochem.7b00721
---------- MLA ----------
Borkosky, S.S., Camporeale, G., Chemes, L.B., Risso, M., Noval, M.G., Sánchez, I.E., et al. "Hidden Structural Codes in Protein Intrinsic Disorder" . Biochemistry, vol. 56, no. 41, 2017, pp. 5560-5569.
http://dx.doi.org/10.1021/acs.biochem.7b00721
---------- VANCOUVER ----------
Borkosky, S.S., Camporeale, G., Chemes, L.B., Risso, M., Noval, M.G., Sánchez, I.E., et al. Hidden Structural Codes in Protein Intrinsic Disorder. Biochemistry. 2017;56(41):5560-5569.
http://dx.doi.org/10.1021/acs.biochem.7b00721