Artículo

Demicheli, V.; Moreno, D.M.; Jara, G.E.; Lima, A.; Carballal, S.; Ríos, N.; Batthyany, C.; Ferrer-Sueta, G.; Quijano, C.; Estrĺn, D.A.; Martí, M.A.; Radi, R. "Mechanism of the Reaction of Human Manganese Superoxide Dismutase with Peroxynitrite: Nitration of Critical Tyrosine 34" (2016) Biochemistry. 55(24):3403-3417
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Human Mn-containing superoxide dismutase (hMnSOD) is a mitochondrial enzyme that metabolizes superoxide radical (O2 •-). O2 •- reacts at diffusional rates with nitric oxide to yield a potent nitrating species, peroxynitrite anion (ONOO-). MnSOD is nitrated and inactivated in vivo, with active site Tyr34 as the key oxidatively modified residue. We previously reported a k of ?1.0 × 105 M-1 s-1 for the reaction of hMnSOD with ONOO- by direct stopped-flow spectroscopy and the critical role of Mn in the nitration process. In this study, we further established the mechanism of the reaction of hMnSOD with ONOO-, including the necessary re-examination of the second-order rate constant by an independent method and the delineation of the microscopic steps that lead to the regio-specific nitration of Tyr34. The redetermination of k was performed by competition kinetics utilizing coumarin boronic acid, which reacts with ONOO- at a rate of ?1 × 106 M-1 s-1 to yield the fluorescence product, 7-hydroxycoumarin. Time-resolved fluorescence studies in the presence of increasing concentrations of hMnSOD provided a k of ?1.0 × 105 M-1 s-1, fully consistent with the direct method. Proteomic analysis indicated that ONOO-, but not other nitrating agents, mediates the selective modification of active site Tyr34. Hybrid quantum-classical (quantum mechanics/molecular mechanics) simulations supported a series of steps that involve the initial reaction of ONOO- with MnIII to yield MnIV and intermediates that ultimately culminate in 3-nitroTyr34. The data reported herein provide a kinetic and mechanistic basis for rationalizing how MnSOD constitutes an intramitochondrial target for ONOO- and the microscopic events, with atomic level resolution, that lead to selective and efficient nitration of critical Tyr34. © 2016 American Chemical Society.

Registro:

Documento: Artículo
Título:Mechanism of the Reaction of Human Manganese Superoxide Dismutase with Peroxynitrite: Nitration of Critical Tyrosine 34
Autor:Demicheli, V.; Moreno, D.M.; Jara, G.E.; Lima, A.; Carballal, S.; Ríos, N.; Batthyany, C.; Ferrer-Sueta, G.; Quijano, C.; Estrĺn, D.A.; Martí, M.A.; Radi, R.
Filiación:Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores, Montevideo, 2125, Uruguay
Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Avda. General Flores, Montevideo, 2125, Uruguay
Instituto de Química de Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, S2002LRK, Argentina
Departamento de Química Inorgánica, Analítica y Química-Física (INQUIMAE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
Unidad Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Montevideo, Uruguay
Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la Repúbica, Igua, Montevideo, 4225, Uruguay
Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Avda. General, Flores, Montevideo, 2124, Uruguay
Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
Palabras clave:Amino acids; Enzymes; Fluorescence; Manganese; Molecular modeling; Nitric oxide; Oxygen; Quantum theory; Rate constants; Reaction intermediates; Atomic-level resolution; Manganese superoxide dismutase; Mitochondrial enzymes; Quantum mechanics/molecular mechanics; Second-order rate constants; Selective modification; Super oxide dismutase; Time-resolved fluorescence; Nitration; 3 nitrotyrosine; boronic acid derivative; coumarin; coumarin boronic acid; dithionite; manganese superoxide dismutase; monomer; peroxynitrite; sodium azide; transition element; tyrosine; tyrosine 34; unclassified drug; 7-hydroxycoumarin; nitric acid derivative; nitric oxide; peroxynitrous acid; superoxide dismutase; tyrosine; umbelliferone derivative; Article; enzyme activity; enzyme inactivation; fluorescence analysis; human; isoelectric point; kinetics; molecular mechanics; nitration; oxidation reduction potential; oxidation reduction reaction; priority journal; proteomics; quantum mechanics; rate constant; two dimensional electrophoresis; enzyme active site; metabolism; molecular model; Western blotting; Blotting, Western; Catalytic Domain; Humans; Kinetics; Models, Molecular; Nitrates; Nitric Oxide; Oxidation-Reduction; Peroxynitrous Acid; Proteomics; Superoxide Dismutase; Tyrosine; Umbelliferones
Año:2016
Volumen:55
Número:24
Página de inicio:3403
Página de fin:3417
DOI: http://dx.doi.org/10.1021/acs.biochem.6b00045
Título revista:Biochemistry
Título revista abreviado:Biochemistry
ISSN:00062960
CODEN:BICHA
CAS:3 nitrotyrosine, 3604-79-3; coumarin, 91-64-5; dithionite, 14844-07-6; sodium azide, 26628-22-8; tyrosine, 16870-43-2, 55520-40-6, 60-18-4; nitric oxide, 10102-43-9; peroxynitrous acid, 14691-52-2; superoxide dismutase, 37294-21-6, 9016-01-7, 9054-89-1; 7-hydroxycoumarin; Nitrates; Nitric Oxide; Peroxynitrous Acid; Superoxide Dismutase; Tyrosine; Umbelliferones
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00062960_v55_n24_p3403_Demicheli

Referencias:

  • Beyer, W., Imlay, J., Fridovich, I., Superoxide dismutases (1991) Prog. Nucleic Acid Res. Mol. Biol., 40, pp. 221-253
  • Keele, B.B., Jr., McCord, J.M., Fridovich, I., Superoxide dismutase from Escherichia coli B. A new manganese-containing enzyme (1970) J. Biol. Chem., 245, pp. 6176-6181
  • Weisinger, R.A., Fridovich, I., Mitocondrial Superoxide Dismutase (1973) J. Biol. Chem., 248, pp. 4793-4796
  • Li, Y., Huang, T.T., Carlson, E.J., Melov, S., Ursell, P.C., Olson, J.L., Noble, L.J., Chan, P.H., Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase (1995) Nat. Genet., 11, pp. 376-381
  • Borgstahl, G.E., Parge, H.E., Hickey, M.J., Beyer, W.F., Jr., Hallewell, R.A., Tainer, J.A., The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles (1992) Cell, 71, pp. 107-118
  • Ludwig, M.L., Metzger, A.L., Pattridge, K.A., Stallings, W.C., Manganese superoxide dismutase from Thermus thermophilus. A structural model refined at 1.8 A resolution (1991) J. Mol. Biol., 219, pp. 335-358
  • Quint, P., Ayala, I., Busby, S.A., Chalmers, M.J., Griffin, P.R., Rocca, J., Nick, H.S., Silverman, D.N., Structural mobility in human manganese superoxide dismutase (2006) Biochemistry, 45, pp. 8209-8215
  • Quint, P., Reutzel, R., Mikulski, R., McKenna, R., Silverman, D.N., Crystal structure of nitrated human manganese superoxide dismutase: Mechanism of inactivation (2006) Free Radical Biol. Med., 40, pp. 453-458
  • Ramilo, C.A., Leveque, V., Guan, Y., Lepock, J.R., Tainer, J.A., Nick, H.S., Silverman, D.N., Interrupting the hydrogen bond network at the active site of human manganese superoxide dismutase (1999) J. Biol. Chem., 274, pp. 27711-27716
  • MacMillan-Crow, L.A., Crow, J.P., Thompson, J.A., Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues (1998) Biochemistry, 37, pp. 1613-1622
  • Moreno, D.M., Marti, M.A., De Biase, P.M., Estrin, D.A., Demicheli, V., Radi, R., Boechi, L., Exploring the molecular basis of human manganese superoxide dismutase inactivation mediated by tyrosine 34 nitration (2011) Arch. Biochem. Biophys., 507, pp. 304-309
  • Yamakura, F., Taka, H., Fujimura, T., Murayama, K., Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine (1998) J. Biol. Chem., 273, pp. 14085-14089
  • MacMillan-Crow, L.A., Cruthirds, D.L., Invited review: Manganese superoxide dismutase in disease (2001) Free Radical Res., 34, pp. 325-336
  • Quijano, C., Hernandez-Saavedra, D., Castro, L., McCord, J.M., Freeman, B.A., Radi, R., Reaction of peroxynitrite with Mn-superoxide dismutase. Role of the metal center in decomposition kinetics and nitration (2001) J. Biol. Chem., 276, pp. 11631-11638
  • Merenyi, G., Lind, J., Thermodynamics of peroxynitrite and its CO2 adduct (1997) Chem. Res. Toxicol., 10, pp. 1216-1220
  • Botti, H., Möller, M.N., Steinmann, D., Nauser, T., Koppenol, W.H., Denicola, A., Radi, R., Distance-dependent diffusion-controlled reaction of NO and O2- at chemical equilibrium with ONOO (2010) J. Phys. Chem. B, 114, pp. 16584-16593
  • Goldstein, S., Czapski, G., The reaction of NO• with O2 •? and HO2 •: A pulse radiolysis study (1995) Free Radical Biol. Med., 19, pp. 505-510
  • Bull, C., Niederhoffer, E., Yoshida, T., Fee, J.A., Kinetic studies of superoxide dismutases: Properties of the manganese-containing protein from Thermus thermophilus (1991) J. Am. Chem. Soc., 113, pp. 4069-4076
  • Fee, J.A., Bull, C., Steady-state kinetic studies of superoxide dismutases. Saturative behavior of the copper- and zinc-containing protein (1986) J. Biol. Chem., 261, pp. 13000-13005
  • Klug, D., Rabani, J., Fridovich, I., A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis (1972) J. Biol. Chem., 247, pp. 4839-4842
  • Demicheli, V., Quijano, C., Alvarez, B., Radi, R., Inactivation and nitration of human superoxide dismutase (SOD) by fluxes of nitric oxide and superoxide (2007) Free Radical Biol. Med., 42, pp. 1359-1368
  • Radi, R., Beckman, J.S., Bush, K.M., Freeman, B.A., Peroxynitrite oxidation of sulfhydryls. the cytotoxic potential of superoxide and nitric oxide (1991) J. Biol. Chem., 266, pp. 4244-4250
  • Denicola, A., Freeman, B.A., Trujillo, M., Radi, R., Peroxynitrite reaction with carbon dioxide/bicarbonate: Kinetics and influence on peroxynitrite-mediated oxidations (1996) Arch. Biochem. Biophys., 333, pp. 49-58
  • Ferrer-Sueta, G., Radi, R., Chemical biology of peroxynitrite: Kinetics, diffusion, and radicals (2009) ACS Chem. Biol., 4, pp. 161-177
  • Lymar, S.V., Hurst, J.K., Carbon dioxide: Physiological catalyst for peroxynitrite-mediated cellular damage or cellular protectant? (1996) Chem. Res. Toxicol., 9, pp. 845-850
  • Lymar, S.V., Jiang, Q., Hurst, J.K., Mechanism of carbon dioxide-catalyzed oxidation of tyrosine by peroxynitrite (1996) Biochemistry, 35, pp. 7855-7861
  • Meli, R., Nauser, T., Latal, P., Koppenol, W.H., Reaction of peroxynitrite with carbon dioxide: Intermediates and determination of the yield of CO3- and NO2 (2002) JBIC, J. Biol. Inorg. Chem., 7, pp. 31-36
  • Beckman, J.S., Ischiropoulos, H., Zhu, L., Van Der Woerd, M., Smith, C., Chen, J., Harrison, J., Tsai, M., Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite (1992) Arch. Biochem. Biophys., 298, pp. 438-445
  • Ferrer-Sueta, G., Quijano, C., Alvarez, B., Radi, R., Reactions of manganese porphyrins and manganese-superoxide dismutase with peroxynitrite (2002) Methods Enzymol., 349, pp. 23-37
  • Alvarez, B., Demicheli, V., Duran, R., Trujillo, M., Cervenansky, C., Freeman, B.A., Radi, R., Inactivation of human Cu,Zn superoxide dismutase by peroxynitrite and formation of histidinyl radical (2004) Free Radical Biol. Med., 37, pp. 813-822
  • Martinez, A., Peluffo, G., Petruk, A.A., Hugo, M., Pieyro, D., Demicheli, V., Moreno, D.M., Durán, R., Structural and Molecular Basis of the Peroxynitrite-mediated Nitration and Inactivation of Trypanosoma cruzi Iron-Superoxide Dismutases (Fe-SODs) A and B Disparate Susceptibilities Due to the Repair of Tyr35 Radical by Cys83 in Fe-SodB Through Intramolecular Electron Transfer (2014) J. Biol. Chem., 289, pp. 12760-12778
  • Ischiropoulos, H., Zhu, L., Chen, J., Tsai, M., Martin, J.C., Smith, C.D., Beckman, J.S., Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase (1992) Arch. Biochem. Biophys., 298, pp. 431-437
  • Surmeli, N.B., Litterman, N.K., Miller, A.F., Groves, J.T., Peroxynitrite Mediates Active Site Tyrosine Nitration in Manganese Superoxide Dismutase. Evidence of a Role for the Carbonate Radical Anion (2010) J. Am. Chem. Soc., 132, pp. 17174-17185
  • MacMillan-Crow, L.A., Crow, J.P., Kerby, J.D., Beckman, J.S., Thompson, J.A., Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts (1996) Proc. Natl. Acad. Sci. U. S. A., 93, pp. 11853-11858
  • MacMillan-Crow, L.A., Cruthirds, D.L., Ahki, K.M., Sanders, P.W., Thompson, J.A., Mitochondrial tyrosine nitration precedes chronic allograft nephropathy (2001) Free Radical Biol. Med., 31, pp. 1603-1608
  • Saha, A., Goldstein, S., Cabelli, D., Czapski, G., Determination of optimal conditions for synthesis of peroxynitrite by mixing acidified hydrogen peroxide with nitrite (1998) Free Radical Biol. Med., 24, pp. 653-659
  • Hughes, M.N., Nicklin, H.G., Part I. Kinetics of decomposition of pernitrous acid (1968) J. Chem. Soc. A, pp. 450-452
  • Griess, J.P., On a new series of bodies in which nitrogen is substituted for hydrogen (1864) Philos. Trans R Soc. Lond B Biol. Sci., 154, pp. 667-731
  • Flohe, L., Otting, F., Superoxide dismutase assays (1984) Methods Enzymol., 105, pp. 93-104
  • McCord, J.M., Fridovich, I., Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) (1969) J. Biol. Chem., 244, pp. 6049-6055
  • Zielonka, J., Sikora, A., Joseph, J., Kalyanaraman, B., Peroxynitrite is the major species formed from different flux ratios of co-generated nitric oxide and superoxide: Direct reaction with boronate-based fluorescent probe (2010) J. Biol. Chem., 285, pp. 14210-14216
  • Du, L., Li, M., Zheng, S., Wang, B., Rational Design of a Fluorescent Hydrogen Peroxide Probe Based on the Umbelliferone Fluorophore (2008) Tetrahedron Lett., 49, pp. 3045-3048
  • Crawford, A.G., Liu, Z., Mkhalid, I.A., Thibault, M.H., Schwarz, N., Alcaraz, G., Steffen, A., Marder, T.B., Synthesis of 2- and 2,7-functionalized pyrene derivatives: An application of selective C-H borylation (2012) Chem. - Eur. J., 18, pp. 5022-5035
  • Radi, R., Kinetic analysis of reactivity of peroxynitrite with biomolecules (1996) Methods Enzymol., 269, pp. 354-366
  • Whittaker, J.W., Whittaker, M.M., Active site spectral studies on manganese superoxide dismutase (1991) J. Am. Chem. Soc., 113, pp. 5528-5540
  • Sokolovsky, M., Riordan, J.F., Vallee, B.L., Conversion of 3-nitrotyrosine to 3-aminotyrosine in peptides and proteins (1967) Biochem. Biophys. Res. Commun., 27, pp. 20-25
  • Yokoyama, K., Uhlin, U., Stubbe, J., Site-specific incorporation of 3-nitrotyrosine as a probe of pKa perturbation of redox-active tyrosines in ribonucleotide reductase (2010) J. Am. Chem. Soc., 132, pp. 8385-8397
  • Hellman, U., Sample preparation by SDS/PAGE and in-gel digestion (2000) Proteomics in Functional Genomics, pp. 43-54. , Springer, Berlin
  • Shandar, A., Gromiha, M., Fawareh, H., Sarai, A., ASA view: Solvent accessibility graphics for proteins (2004) BMC Bioinf., 5, p. 51
  • Ahmad, S., Gromiha, M., Fawareh, H., Sarai, A., ASAView: Database and tool for solvent accessibility representation in proteins (2004) BMC Bioinf., 5, p. 51
  • Mendes, P., GEPASI: A software package for modelling the dynamics, steady states and control of biochemical and other systems (1993) Bioinformatics, 9, pp. 563-571
  • Mendes, P., Biochemistry by numbers: Simulation of biochemical pathways with Gepasi 3 (1997) Trends Biochem. Sci., 22, pp. 361-363
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J. Chem. Phys., 79, p. 926
  • Luty, B.A., Tironi, I.G., Van Gunsteren, W.F., Lattice sum methods for calculating electrostatic interactions in molecular simulations (1995) J. Chem. Phys., 103, p. 3014
  • Case, D.A., Darden, T.A., Cheatham, T.E., III, Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Kollman, P.A., (2012) AMBER 12, , University of California, San Francisco
  • Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E., III, DeBolt, S., Ferguson, D., Kollman, P., AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules (1995) Comput. Phys. Commun., 91, pp. 1-41
  • Rulisek, L., Ryde, U., Structure of reduced and oxidized manganese superoxide dismutase: A combined computational and experimental approach (2006) J. Phys. Chem. B, 110, pp. 11511-11518
  • Bayly, C.I., Cieplak, P., Cornell, W., Kollman, P.A., A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model (1993) J. Phys. Chem., 97, pp. 10269-10280
  • Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange (1993) J. Chem. Phys., 98, p. 5648
  • Becke, A.D., A new mixing of HartreeFock and local density functional theories (1993) J. Chem. Phys., 98, p. 1372
  • Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J., Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes (1977) J. Comput. Phys., 23, pp. 327-341
  • Crespo, A., Scherlis, N.D.A., Martí, M.A., Ordejón, P., Roitberg, N.A.E., Estrin, O.D.A., A DFT-based QM-MM approach designed for the treatment of large molecular systems: Application to chorismate mutase (2003) J. Phys. Chem. B, 107, pp. 13728-13736
  • Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, p. 3865
  • Capece, L., Lewis-Ballester, A., Batabyal, D., Di Russo, N., Yeh, S.-R., Estrin, D.A., Marti, M.A., The first step of the dioxygenation reaction carried out by tryptophan dioxygenase and indoleamine 2, 3-dioxygenase as revealed by quantum mechanical/molecular mechanical studies (2010) JBIC, J. Biol. Inorg. Chem., 15, pp. 811-823
  • Crespo, A., Martí, M.A., Roitberg, A.E., Amzel, L.M., Estrin, O.D.A., The catalytic mechanism of peptidylglycine α-hydroxylating monooxygenase investigated by computer simulation (2006) J. Am. Chem. Soc., 128, pp. 12817-12828
  • Dumas, V.G., Defelipe, L.A., Petruk, A.A., Turjanski, A.G., Marti, M.A., QM/MM study of the Câ€″C coupling reaction mechanism of CYP121, an essential Cytochrome p450 of Mycobacterium tuberculosis (2014) Proteins: Struct., Funct., Genet., 82, pp. 1004-1021
  • Rudzka, K., Moreno, D.M., Eipper, B., Mains, R., Estrin, D.A., Amzel, L.M., Coordination of peroxide to the CuM center of peptidylglycine α-hydroxylating monooxygenase (PHM): Structural and computational study (2013) JBIC, J. Biol. Inorg. Chem., 18, pp. 223-232
  • Bikiel, N.D.E., Boechi, L., Capece, L., Crespo, A., De Biase, P.M., Di Lella, S., González Lebrero, M.C., Estrin, D.A., Modeling heme proteins using atomistic simulations (2006) Phys. Chem. Chem. Phys., 8, pp. 5611-5628
  • Perissinotti, L.L., Marti, M.A., Doctorovich, F., Luque, F.J., Estrin, D.A., A Microscopic Study of the Deoxyhemoglobin-Catalyzed Generation of Nitric Oxide from Nitrite Anion (2008) Biochemistry, 47, pp. 9793-9802
  • Capece, L., Lewis-Ballester, A., Yeh, S.-R., Estrin, D.A., Marti, M.A., Complete reaction mechanism of indoleamine 2, 3-dioxygenase as revealed by QM/MM simulations (2012) J. Phys. Chem. B, 116, pp. 1401-1413
  • Crespo, A., Martí, M.A., Kalko, S.G., Morreale, A., Orozco, M., Gelpi, J.L., Luque, F.J., Estrin, O.D.A., Theoretical study of the truncated hemoglobin HbN: Exploring the molecular basis of the NO detoxification mechanism (2005) J. Am. Chem. Soc., 127, pp. 4433-4444
  • Lewis-Ballester, A., Batabyal, D., Egawa, T., Lu, C., Lin, Y., Marti, M.A., Capece, L., Yeh, S.-R., Evidence for a ferryl intermediate in a heme-based dioxygenase (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 17371-17376
  • Martí, M.A., Capece, L., Crespo, A., Doctorovich, F., Estrin, D.A., Nitric oxide interaction with cytochrome c'and its relevance to guanylate cyclase. Why does the iron histidine bond break? (2005) J. Am. Chem. Soc., 127, pp. 7721-7728
  • Ferrer-Sueta, G., Vitturi, D., Batinic-Haberle, I., Fridovich, I., Goldstein, S., Czapski, G., Radi, R., Reactions of manganese porphyrins with peroxynitrite and carbonate radical anion (2003) J. Biol. Chem., 278, pp. 27432-27438
  • Tovmasyan, A., Carballal, S., Ghazaryan, R., Melikyan, L., Weitner, T., Maia, C.G.C., Reboucas, J.S., Batinic-Haberle, I., Rational design of superoxide dismutase (SOD) mimics: The evaluation of the therapeutic potential of new cationic Mn porphyrins with linear and cyclic substituents (2014) Inorg. Chem., 53, pp. 11467-11483
  • Alvarez, B., Ferrer-Sueta, G., Freeman, B.A., Radi, R., Kinetics of peroxynitrite reaction with amino acids and human serum albumin (1999) J. Biol. Chem., 274, pp. 842-848
  • Sampson, J.B., Ye, Y., Rosen, H., Beckman, J.S., Myeloperoxidase and horseradish peroxidase catalyze tyrosine nitration in proteins from nitrite and hydrogen peroxide (1998) Arch. Biochem. Biophys., 356, pp. 207-213
  • Sturzbecher, M., Kissner, R., Nauser, T., Koppenol, W.H., Homolysis of the peroxynitrite anion detected with permanganate (2007) Inorg. Chem., 46, pp. 10655-10658
  • Coddington, J.W., Hurst, J.K., Lymar, S.V., Hydroxyl radical formation during peroxynitrous acid decomposition (1999) J. Am. Chem. Soc., 121, pp. 2438-2443
  • Merenyi, G., Lind, J., Goldstein, S., Czapski, G., Peroxynitrous acid homolyzes into OH and NO2 radicals (1998) Chem. Res. Toxicol., 11, pp. 712-713
  • Ferrer-Sueta, G., Hannibal, L., Batinic-Haberle, I., Radi, R., Reduction of manganese porphyrins by flavoenzymes and submitochondrial particles: A catalytic cycle for the reduction of peroxynitrite (2006) Free Radical Biol. Med., 41, pp. 503-512
  • Van Leeuwen, J.W., Raap, A., Koppenol, W.H., Nauta, H., A tunnelling model to explain the reduction of ferricytochrome c by H and OH radicals (1978) Biochim. Biophys. Acta, Bioenerg., 503, pp. 1-9
  • Goldstein, S., Lind, J., Merenyi, G., Chemistry of peroxynitrites as compared to peroxynitrates (2005) Chem. Rev., 105, pp. 2457-2470
  • Guan, Y., Hickey, M.J., Borgstahl, G.E., Hallewell, R.A., Lepock, J.R., O'Connor, D., Hsieh, Y., Tainer, J.A., Crystal structure of Y34F mutant human mitochondrial manganese superoxide dismutase and the functional role of tyrosine 34 (1998) Biochemistry, 37, pp. 4722-4730
  • Hsu, J.L., Hsieh, Y., Tu, C., O'Connor, D., Nick, H.S., Silverman, D.N., Catalytic properties of human manganese superoxide dismutase (1996) J. Biol. Chem., 271, pp. 17687-17691
  • Sheng, Y., Abreu, I.A., Cabelli, D.E., Maroney, M.J., Miller, A.F., Teixeira, M., Valentine, J.S., Superoxide dismutases and superoxide reductases (2014) Chem. Rev., 114, pp. 3854-3918
  • Bielski, B.H., Arudi, R.L., Preparation and stabilization of aqueous/ethanolic superoxide solutions (1983) Anal. Biochem., 133, pp. 170-178
  • Alvarez, B., Ferrer-Sueta, G., Radi, R., Slowing of peroxynitrite decomposition in the presence of mannitol and ethanol (1998) Free Radical Biol. Med., 24, pp. 1331-1337
  • Ross, A.B., Mallard, W.G., Helman, W.P., Buxton, G.V., Huie, R.T., Neta, P., (1998) NDRL-NIS T Solution Kinetics Database, , version 3, Notre Dame Radiation Laboratory, Notre Dame, IN, and NIST Standard Reference Data, Gaithersburg, MD
  • Merenyi, G., Lind, J., Goldstein, S., Czapski, G., Mechanism and termochemistry of peroxynitrite decomposition in water (1999) J. Phys. Chem. A, 103, pp. 5685-5691
  • Goldstein, S., Czapski, G., Kinetics of nitric oxide autoxidation in aqueous solutions in the absence and presence of various reductants. The nature of the oxidizing intermediates (1995) J. Am. Chem. Soc., 117, pp. 12078-12084
  • Goldstein, S., Czapski, G., Lind, J., Merenyi, G., Tyrosine nitration by simultaneous generation of ·nO and O2 .- under physiological conditions. How the radicals do the job (2000) J. Biol. Chem., 275, pp. 3031-3036
  • Goldstein, S., Czapski, G., Lind, J., Merenyi, G., Mechanism of Decomposition of Peroxynitric Ion (O2NOO-): Evidence for the Formation of O2 .- and ·nO2 Radicals (1998) Inorg. Chem., 37, pp. 3943-3947
  • Goldstein, S., Czapski, G., Lind, J., Merenyi, G., Effect of NO on the decomposition of peroxynitrite: Reaction of N2O3 with ONOO (1999) Chem. Res. Toxicol., 12, pp. 132-136

Citas:

---------- APA ----------
Demicheli, V., Moreno, D.M., Jara, G.E., Lima, A., Carballal, S., Ríos, N., Batthyany, C.,..., Radi, R. (2016) . Mechanism of the Reaction of Human Manganese Superoxide Dismutase with Peroxynitrite: Nitration of Critical Tyrosine 34. Biochemistry, 55(24), 3403-3417.
http://dx.doi.org/10.1021/acs.biochem.6b00045
---------- CHICAGO ----------
Demicheli, V., Moreno, D.M., Jara, G.E., Lima, A., Carballal, S., Ríos, N., et al. "Mechanism of the Reaction of Human Manganese Superoxide Dismutase with Peroxynitrite: Nitration of Critical Tyrosine 34" . Biochemistry 55, no. 24 (2016) : 3403-3417.
http://dx.doi.org/10.1021/acs.biochem.6b00045
---------- MLA ----------
Demicheli, V., Moreno, D.M., Jara, G.E., Lima, A., Carballal, S., Ríos, N., et al. "Mechanism of the Reaction of Human Manganese Superoxide Dismutase with Peroxynitrite: Nitration of Critical Tyrosine 34" . Biochemistry, vol. 55, no. 24, 2016, pp. 3403-3417.
http://dx.doi.org/10.1021/acs.biochem.6b00045
---------- VANCOUVER ----------
Demicheli, V., Moreno, D.M., Jara, G.E., Lima, A., Carballal, S., Ríos, N., et al. Mechanism of the Reaction of Human Manganese Superoxide Dismutase with Peroxynitrite: Nitration of Critical Tyrosine 34. Biochemistry. 2016;55(24):3403-3417.
http://dx.doi.org/10.1021/acs.biochem.6b00045