El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


We report a resonance Raman and UV-vis characterization of the active site structure of oxidatively modified forms of cytochrome c (Cyt-c) free in solution and in complexes with cardiolipin (CL). The studied post-translational modifications of Cyt-c include methionine sulfoxidation and tyrosine nitration, which lead to altered heme axial ligation and increased peroxidase activity with respect to those of the wild-type protein. In spite of the structural and activity differences between the protein variants free in solution, binding to CL liposomes induces in all cases the formation of a spectroscopically identical bis-His axial coordination conformer that more efficiently promotes lipid peroxidation. The spectroscopic results indicate that the bis-His form is in equilibrium with small amounts of high-spin species, thus suggesting a labile distal His ligand as the basis for the CL-induced increase in enzymatic activity observed for all protein variants. For Cyt-c nitrated at Tyr74 and sulfoxidized at Met80, the measured apparent binding affinities for CL are ∼4 times larger than for wild-type Cyt-c. On the basis of these results, we propose that these post-translational modifications may amplify the pro-apoptotic signal of Cyt-c under oxidative stress conditions at CL concentrations lower than for the unmodified protein. © 2015 American Chemical Society.


Documento: Artículo
Título:Active Site Structure and Peroxidase Activity of Oxidatively Modified Cytochrome c Species in Complexes with Cardiolipin
Autor:Capdevila, D.A.; Oviedo Rouco, S.; Tomasina, F.; Tortora, V.; Demicheli, V.; Radi, R.; Murgida, D.H.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires, C1428EHA, Argentina
Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
Palabras clave:Amino acids; Binding energy; Bins; Enzyme activity; Liposomes; Nitration; Oxidation; Phospholipids; Active site structure; Enzymatic activities; Lipid peroxidation; Peroxidase activities; Post-translational modifications; Proapoptotic signals; Tyrosine nitration; Wild-type proteins; Proteins; cardiolipin; cytochrome c; heme; liposome; methionine; peroxidase; protein variant; tyrosine; cardiolipin; cytochrome c; Article; conformational transition; controlled study; enzyme active site; enzyme activity; enzyme structure; excitation; lipid peroxidation; nitration; oxidative stress; priority journal; protein processing; protein protein interaction; Raman spectrometry; sulfoxidation; ultracentrifugation; ultraviolet spectroscopy; animal; chemistry; enzyme active site; horse; protein conformation; ultraviolet spectrophotometry; Animals; Cardiolipins; Catalytic Domain; Cytochromes c; Horses; Protein Conformation; Spectrophotometry, Ultraviolet; Spectrum Analysis, Raman
Página de inicio:7491
Página de fin:7504
Título revista:Biochemistry
Título revista abreviado:Biochemistry
CAS:cytochrome c, 9007-43-6, 9064-84-0; heme, 14875-96-8; methionine, 59-51-8, 63-68-3, 7005-18-7; peroxidase, 9003-99-0; tyrosine, 16870-43-2, 55520-40-6, 60-18-4; Cardiolipins; Cytochromes c


  • (1995) Cytochrome C: A Multidisciplinary Approach, , University Science Books, Sausalito, CA
  • Bushnell, G.W., Louie, G.V., Brayer, G.D., High-resolution three-dimensional structure of horse heart cytochrome c (1990) J. Mol. Biol., 214, pp. 585-595
  • Cortese, J.D., Voglino, A.L., Hackenbrock, C.R., Persistence of cytochrome c binding to membranes at physiological mitochondrial intermembrane space ionic strength (1995) Biochim. Biophys. Acta, Bioenerg., 1228, pp. 216-228
  • Schug, Z.T., Gottlieb, E., Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis (2009) Biochim. Biophys. Acta, Biomembr., 1788, pp. 2022-2031
  • Salamon, Z., Tollin, G., Interaction of horse heart cytochrome c with lipid bilayer membranes: Effects on redox potentials (1997) J. Bioenerg. Biomembr., 29, pp. 211-221
  • Alvarez-Paggi, D., Castro, M.A., Tortora, V., Castro, L., Radi, R., Murgida, D.H., Electrostatically Driven Second-Sphere Ligand Switch between High and Low Reorganization Energy Forms of Native Cytochrome c (2013) J. Am. Chem. Soc., 135, pp. 4389-4397
  • Basova, L.V., Kurnikov, I.V., Wang, L., Ritov, V.B., Belikova, N.A., Vlasova, I.I., Pacheco, A.A., Kagan, V.E., Cardiolipin switch in mitochondria: Shutting off the reduction of cytochrome c and turning on the peroxidase activity (2007) Biochemistry, 46, pp. 3423-3434
  • Bradley, J.M., Silkstone, G., Wilson, M.T., Cheesman, M.R., Butt, J.N., Probing a Complex of Cytochrome c and Cardiolipin by Magnetic Circular Dichroism Spectroscopy: Implications for the Initial Events in Apoptosis (2011) J. Am. Chem. Soc., 133, pp. 19676-19679
  • Murgida, D.H., Hildebrandt, P., Electron-transfer processes of cytochrome c at interfaces. New insights by surface-enhanced resonance Raman spectroscopy (2004) Acc. Chem. Res., 37, pp. 854-861
  • Alvarez-Paggi, D., Zitare, U., Murgida, D.H., The role of protein dynamics and thermal fluctuations in regulating cytochrome c/cytochrome c oxidase electron transfer (2014) Biochim. Biophys. Acta, Bioenerg., 1837, pp. 1196-1207
  • Capdevila, D.A., Marmisollé, W.A., Williams, F.J., Murgida, D.H., Phosphate mediated adsorption and electron transfer of cytochrome c. A time-resolved SERR spectroelectrochemical study (2013) Phys. Chem. Chem. Phys., 15, pp. 5386-5394
  • Garcia Fernandez, M., Troiano, L., Moretti, L., Nasi, M., Pinti, M., Salvioli, S., Dobrucki, J., Cossarizza, A., Early changes in intramitochondrial cardiolipin distribution during apoptosis (2002) Cell Growth Diff., 13, pp. 449-455
  • Osman, C., Voelker, D.R., Langer, T., Making heads or tails of phospholipids in mitochondria (2011) J. Cell Biol., 192, pp. 7-16
  • Sinibaldi, F., Howes, B.D., Piro, M.C., Polticelli, F., Bombelli, C., Ferri, T., Coletta, M., Santucci, R., Extended cardiolipin anchorage to cytochrome c: A model for protein-mitochondrial membrane binding (2010) JBIC, J. Biol. Inorg. Chem., 15, pp. 689-700
  • Tuominen, E.K.J., Wallace, C.J.A., Kinnunen, P.K.J., Phospholipid-cytochrome c interaction. Evidence for the extended lipid anchorage (2002) J. Biol. Chem., 277, pp. 8822-8826
  • Muenzner, J., Pletneva, E.V., Structural transformations of cytochrome c upon interaction with cardiolipin (2014) Chem. Phys. Lipids, 179, pp. 57-63
  • Ranieri, A., Bortolotti, C.A., Battistuzzi, G., Borsari, M., Paltrinieri, L., Di Rocco, G., Sola, M., Effect of motional restriction on the unfolding properties of a cytochrome c featuring a His/Met-His/His ligation switch (2014) Metallomics, 6, pp. 874-884
  • Kawai, C., Ferreira, J.C., Baptista, M.S., Nantes, I.L., Not only oxidation of cardiolipin affects the affinity of cytochrome c for lipid bilayers (2014) J. Phys. Chem. B, 118, pp. 11863-11872
  • Mugnol, K.C.U., Ando, R.A., Nagayasu, R.Y., Faljoni-Alario, A., Brochsztain, S., Santos, P.S., Nascimento, O.R., Nantes, I.L., Spectroscopic, structural, and functional characterization of the alternative low-spin state of horse heart cytochrome c (2008) Biophys. J., 94, pp. 4066-4077
  • Zucchi, M.R., Nascimento, O.R., Faljoni-Alario, A., Prieto, T., Nantes, I.L., Modulation of cytochrome c spin states by lipid acyl chains: A continuous-wave electron paramagnetic resonance (CW-EPR) study of haem iron (2003) Biochem. J., 370, pp. 671-678
  • Nantes, I.L., Zucchi, M.R., Nascimento, O.R., Faljoni-Alario, A., Effect of heme iron valence state on the conformation of cytochrome c and its association with membrane interfaces: A CD and EPR investigation (2001) J. Biol. Chem., 276, pp. 153-158
  • Sinibaldi, F., Fiorucci, L., Patriarca, A., Lauceri, R., Ferri, T., Coletta, M., Santucci, R., Insights into cytochrome c-cardiolipin interaction. Role played by ionic strength (2008) Biochemistry, 47, pp. 6928-6935
  • Sinibaldi, F., Howes, B.D., Droghetti, E., Polticelli, F., Piro, M.C., Di Pierro, D., Fiorucci, L., Santucci, R., Role of Lysines in Cytochrome c-Cardiolipin Interaction (2013) Biochemistry, 52, pp. 4578-4588
  • Oellerich, S., Wackerbarth, H., Hildebrandt, P., Spectroscopic characterization of nonnative conformational states of cytochrome c (2002) J. Phys. Chem. B, 106, pp. 6566-6580
  • Oellerich, S., Lecomte, S., Paternostre, M., Heimburg, T., Hildebrandt, P., Peripheral and integral binding of cytochrome c to phospholipids vesicles (2004) J. Phys. Chem. B, 108, pp. 3871-3878
  • Hanske, J., Toffey, J.R., Morenz, A.M., Bonilla, A.J., Schiavoni, K.H., Pletneva, E.V., Conformational properties of cardiolipin-bound cytochrome c (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 125-130
  • Simon, M., Metzinger-Le Meuth, V., Chevance, S., Delalande, O., Bondon, A., Versatility of non-native forms of human cytochrome c: PH and micellar concentration dependence (2013) JBIC, J. Biol. Inorg. Chem., 18, pp. 27-38
  • Santoni, E., Scatragli, S., Sinibaldi, F., Fiorucci, L., Santucci, R., Smulevich, G., A model for the misfolded bis-His intermediate of cytochrome c: The 1-56 N-fragment (2004) J. Inorg. Biochem., 98, pp. 1067-1077
  • Heimburg, T., Angerstein, B., Marsh, D., Binding of peripheral proteins to mixed lipid membranes: Effect of lipid demixing upon binding (1999) Biophys. J., 76, pp. 2575-2586
  • Heimburg, T., Marsh, D., Investigation of secondary and tertiary structural changes of cytochrome c in complexes with anionic lipids using amide hydrogen exchange measurements: An FTIR study (1993) Biophys. J., 65, pp. 2408-2417
  • Choi, S., Swanson, J.M., Interaction of cytochrome c with cardiolipin: An infrared spectroscopic study (1995) Biophys. Chem., 54, pp. 271-278
  • Kagan, V.E., Baylr, H.A., Belikova, N.A., Kapralov, O., Tyurina, Y.Y., Tyurin, V.A., Jiang, J.F., Borisenko, G., Cytochrome c/cardiolipin relations in mitochondria: A kiss of death (2009) Free Radical Biol. Med., 46, pp. 1439-1453
  • Huttemann, M., Pecina, P., Rainbolt, M., Sanderson, T.H., Kagan, V.E., Samavati, L., Doan, J.W., Lee, I., The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis (2011) Mitochondrion, 11, pp. 369-381
  • Kapralov, A.A., Kurnikov, I.V., Vlasova, I.I., Belikova, N.A., Tyurin, V.A., Basova, L.V., Zhao, Q., Kagan, V.E., The hierarchy of structural transitions induced in cytochrome c by anionic phospholipids determines its peroxidase activation and selective peroxidation during apoptosis in cells (2007) Biochemistry, 46, pp. 14232-14244
  • Tyurina, Y.Y., Kini, V., Tyurin, V.A., Vlasova, I.I., Jiang, J.F., Kapralov, A.A., Belikova, N.A., Kagan, V.E., Mechanisms of cardiolipin oxidation by cytochrome c: Relevance to pro- and antiapoptotic functions of etoposide (2006) Mol. Pharmacol., 70, pp. 706-717
  • Kagan, V.E., Tyurin, V.A., Jiang, J.F., Tyurina, Y.Y., Ritov, V.B., Amoscato, A.A., Osipov, A.N., Borisenko, G.G., Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors (2005) Nat. Chem. Biol., 1, pp. 223-232
  • Kapralov, A.A., Yanamala, N., Tyurina, Y.Y., Castro, L., Samhan-Arias, A., Vladimirov, Y.A., Maeda, A., Kagan, V.E., Topography of tyrosine residues and their involvement in peroxidation of polyunsaturated cardiolipin in cytochrome c/cardiolipin peroxidase complexes (2011) Biochim. Biophys. Acta, Biomembr., 1808, pp. 2147-2155
  • Giorgio, M., Trinei, M., Migliaccio, E., Pelicci, P.G., Hydrogen peroxide: A metabolic by-product or a common mediator of ageing signals? (2007) Nat. Rev. Mol. Cell Biol., 8, pp. 722-728
  • Kulikov, A.V., Shilov, E.S., Mufazalov, I.A., Gogvadze, V., Nedospasov, S.A., Zhivotovsky, B., Cytochrome c: The Achilles heel in apoptosis (2012) Cell. Mol. Life Sci., 69, pp. 1787-1797
  • Diederix, R.E.M., Ubbink, M., Canters, G.W., Peroxidase activity as a tool for studying the folding of c-type cytochromes (2002) Biochemistry, 41, pp. 13067-13077
  • Rajagopal, B.S., Edzuma, A.N., Hough, M.A., Blundell, K.L., Kagan, V.E., Kapralov, A.A., Fraser, L.A., Worrall, J.A., The hydrogen-peroxide-induced radical behaviour in human cytochrome c-phospholipid complexes: Implications for the enhanced pro-apoptotic activity of the G41S mutant (2013) Biochem. J., 456, pp. 441-452
  • Josephs, T.M., Morison, I.M., Day, C.L., Wilbanks, S.M., Ledgerwood, E.C., Enhancing the peroxidase activity of cytochrome c by mutation of residue 41: Implications for the peroxidase mechanism and cytochrome c release (2014) Biochem. J., 458, pp. 259-265
  • Radi, R., Protein Tyrosine Nitration: Biochemical Mechanisms and Structural Basis of Functional Effects (2013) Acc. Chem. Res., 46, pp. 550-559
  • Souza, J.M., Castro, L., Cassina, A.M., Batthyany, C., Radi, R., Nitrocytochrome c: Synthesis, purification, and functional studies (2008) Methods Enzymol., 441, pp. 197-215
  • Abriata, L.A., Cassina, A., Tortora, V., Marin, M., Souza, J.M., Castro, L., Vila, A.J., Radi, R., Nitration of solvent-exposed tyrosine 74 on cytochrome c triggers heme iron-methionine 80 bond disruption. Nuclear magnetic resonance and optical spectroscopy studies (2009) J. Biol. Chem., 284, pp. 17-26
  • Capdevila, D.A., Álvarez-Paggi, D., Castro, M.A., Tórtora, V., Demicheli, V., Estrín, D.A., Radi, R., Murgida, D.H., Coupling of tyrosine deprotonation and axial ligand exchange in nitrocytochrome c (2014) Chem. Commun., 50, pp. 2592-2594
  • Chen, Y.R., Deterding, L.J., Sturgeon, B.E., Tomer, K.B., Mason, R.P., Protein oxidation of cytochrome C by reactive halogen species enhances its peroxidase activity (2002) J. Biol. Chem., 277, pp. 29781-29791
  • Capdevila, D.A., Marmisolle, W.A., Tomasina, F., Demicheli, V., Portela, M., Radi, R., Murgida, D.H., Specific methionine oxidation of cytochrome c in complexes with zwitterionic lipids by hydrogen peroxide: Potential implications for apoptosis (2015) Chem. Sci., 6, pp. 705-713
  • Godoy, L.C., Munoz-Pinedo, C., Castro, L., Cardaci, S., Schonhoff, C.M., King, M., Tortora, V., Mannick, J.B., Disruption of the M80-Fe ligation stimulates the translocation of cytochrome c to the cytoplasm and nucleus in nonapoptotic cells (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 2653-2658
  • Rumbley, J.N., Hoang, L., Englander, S.W., Recombinant Equine Cytochrome c in Escherichia coli: High-Level Expression, Characterization, and Folding and Assembly MutantsÇá (2002) Biochemistry, 41, pp. 13894-13901
  • Dopner, S., Hildebrandt, P., Grant Mauk, A., Lenk, H., Stempfle, W., Analysis of vibrational spectra of multicomponent systems. Application to pH-dependent resonance Raman spectra of ferricytochrome c (1996) Spectrochim. Acta, Part A, 52, pp. 573-584
  • Radi, R., Turrens, J.F., Freeman, B.A., Cytochrome c-catalyzed membrane lipid peroxidation by hydrogen peroxide (1991) Arch. Biochem. Biophys., 288, pp. 118-125
  • Dragomir, I., Hagarman, A., Wallace, C., Schweitzer-Stenner, R., Optical band splitting and electronic perturbations of the heme chromophore in cytochrome c at room temperature probed by visible electronic circular dichroism spectroscopy (2007) Biophys. J., 92, pp. 989-998
  • Battistuzzi, G., Bortolotti, C.A., Bellei, M., Di Rocco, G., Salewski, J., Hildebrandt, P., Sola, M., Role of Met80 and Tyr67 in the low-pH conformational equilibria of cytochrome c (2012) Biochemistry, 51, pp. 5967-5978
  • Dopner, S., Hildebrandt, P., Rosell, F.I., Mauk, A.G., Alkaline conformational transitions of ferricytochrome c studied by resonance Raman spectroscopy (1998) J. Am. Chem. Soc., 120, pp. 11246-11255
  • Weinkam, P., Zimmermann, J., Sagle, L.B., Matsuda, S., Dawson, P.E., Wolynes, P.G., Romesberg, F.E., Characterization of Alkaline Transitions in Ferricytochrome c Using Carbon-Deuterium Infrared Probes (2008) Biochemistry, 47, pp. 13470-13480
  • Hu, S., Morris, I.K., Singh, J.P., Smith, K.M., Spiro, T.G., Complete assignment of cytochrome c resonance Raman spectra via enzymatic reconstitution with isotopically labeled hemes (1993) J. Am. Chem. Soc., 115, pp. 12446-12458
  • Indiani, C., De Sanctis, G., Neri, F., Santos, H., Smulevich, G., Coletta, M., Effect of pH on axial ligand coordination of cytochrome c from Methylophilus methylotrophus and horse heart cytochrome c (2000) Biochemistry, 39, pp. 8234-8242
  • Othman, S., Le Lirzin, A., Desbois, A., Resonance Raman investigation of imidazole and imidazolate complexes of microperoxidase: Characterization of the bis(histidine) axial ligation in c- type cytochromes (1994) Biochemistry, 33, pp. 15437-15448
  • Hammack, B., Godbole, S., Bowler, B.E., Cytochrome c folding traps are not due solely to histidine-heme ligation: Direct demonstration of a role for N-terminal amino group-heme ligation1 (1998) J. Mol. Biol., 275, pp. 719-724
  • Sanghera, N., Pinheiro, T.J.T., Unfolding and refolding of cytochrome c driven by the interaction with lipid micelles (2000) Protein Sci., 9, pp. 1194-1202
  • Pinheiro, T.J.T., Elove, G.A., Watts, A., Roder, H., Structural and Kinetic Description of Cytochrome c Unfolding Induced by the Interaction with Lipid Vesicles (1997) Biochemistry, 36, pp. 13122-13132
  • Chattopadhyay, K., Mazumdar, S., Stabilization of partially folded states of cytochrome c in aqueous surfactant: Effects of ionic and hydrophobic interactions (2003) Biochemistry, 42, pp. 14606-14613
  • Rahaman, H., Alam Khan, Md.K., Hassan, M., Islam, A., Moosavi-Movahedi, A.A., Ahmad, F., Heterogeneity of equilibrium molten globule state of cytochrome c induced by weak salt denaturants under physiological condition (2015) PLoS One, 10, p. e0120465
  • Amacher, J.F., Zhong, F., Lisi, G.P., Zhu, M.Q., Alden, S.L., Hoke, K.R., Madden, D.R., Pletneva, E.V., A Compact Structure of Cytochrome c Trapped in a Lysine-Ligated State: Loop Refolding and Functional Implications of a Conformational Switch (2015) J. Am. Chem. Soc., 137, pp. 8435-8449
  • Sinibaldi, F., Droghetti, E., Polticelli, F., Piro, M.C., Di Pierro, D., Ferri, T., Smulevich, G., Santucci, R., The effects of ATP and sodium chloride on the cytochrome c-cardiolipin interaction: The contrasting behavior of the horse heart and yeast proteins (2011) J. Inorg. Biochem., 105, pp. 1365-1372
  • Bergstrom, C.L., Beales, P.A., Lv, Y., Vanderlick, T.K., Groves, J.T., Cytochrome c causes pore formation in cardiolipin-containing membranes (2013) Proc. Natl. Acad. Sci. U. S. A., 110, pp. 6269-6274
  • Quaroni, L., Smith, W.E., The nitro stretch as a probe of the environment of nitrophenols and nitrotyrosines (1999) J. Raman Spectrosc., 30, pp. 537-542
  • Tezcan, F.A., Winkler, J.R., Gray, H.B., Effects of Ligation and Folding on Reduction Potentials of Heme Proteins (1998) J. Am. Chem. Soc., 120, pp. 13383-13388
  • Belikova, N.A., Vladimirov, Y.A., Osipov, A.N., Kapralov, A.A., Tyurin, V.A., Potapovich, M.V., Basova, L.V., Kagan, V.E., Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes (2006) Biochemistry, 45, pp. 4998-5009
  • Abe, M., Niibayashi, R., Koubori, S., Moriyama, I., Miyoshi, H., Molecular mechanisms for the induction of peroxidase activity of the cytochrome c-cardiolipin complex (2011) Biochemistry, 50, pp. 8383-8391
  • Pecina, P., Borisenko, G.G., Belikova, N.A., Tyurina, Y.Y., Pecinova, A., Lee, I., Samhan-Arias, A.K., Huttemann, M., Phosphomimetic Substitution of Cytochrome c Tyrosine 48 Decreases Respiration and Binding to Cardiolipin and Abolishes Ability to Trigger Downstream Caspase Activation (2010) Biochemistry, 49, pp. 6705-6714
  • Ly, H.K., Utesch, T., Diaz-Moreno, I., Garcia-Heredia, J.M., De La Rosa, M.A., Hildebrandt, P., Perturbation of the Redox Site Structure of Cytochrome c Variants upon Tyrosine Nitration (2012) J. Phys. Chem. B, 116, pp. 5694-5702


---------- APA ----------
Capdevila, D.A., Oviedo Rouco, S., Tomasina, F., Tortora, V., Demicheli, V., Radi, R. & Murgida, D.H. (2015) . Active Site Structure and Peroxidase Activity of Oxidatively Modified Cytochrome c Species in Complexes with Cardiolipin. Biochemistry, 54(51), 7491-7504.
---------- CHICAGO ----------
Capdevila, D.A., Oviedo Rouco, S., Tomasina, F., Tortora, V., Demicheli, V., Radi, R., et al. "Active Site Structure and Peroxidase Activity of Oxidatively Modified Cytochrome c Species in Complexes with Cardiolipin" . Biochemistry 54, no. 51 (2015) : 7491-7504.
---------- MLA ----------
Capdevila, D.A., Oviedo Rouco, S., Tomasina, F., Tortora, V., Demicheli, V., Radi, R., et al. "Active Site Structure and Peroxidase Activity of Oxidatively Modified Cytochrome c Species in Complexes with Cardiolipin" . Biochemistry, vol. 54, no. 51, 2015, pp. 7491-7504.
---------- VANCOUVER ----------
Capdevila, D.A., Oviedo Rouco, S., Tomasina, F., Tortora, V., Demicheli, V., Radi, R., et al. Active Site Structure and Peroxidase Activity of Oxidatively Modified Cytochrome c Species in Complexes with Cardiolipin. Biochemistry. 2015;54(51):7491-7504.