Artículo

Zeida, A.; Reyes, A.M.; Lichtig, P.; Hugo, M.; Vazquez, D.S.; Santos, J.; González Flecha, F.L.; Radi, R.; Estrin, D.A.; Trujillo, M. "Molecular Basis of Hydroperoxide Specificity in Peroxiredoxins: The Case of AhpE from Mycobacterium tuberculosis" (2015) Biochemistry. 54(49):7237-7247
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Peroxiredoxins (Prxs) constitute a ubiquitous family of Cys-dependent peroxidases that play essential roles in reducing hydrogen peroxide, peroxynitrite, and organic hydroperoxides in almost all organisms. Members of the Prx subfamilies show differential oxidizing substrate specificities that await explanations at a molecular level. Among them, alkyl hydroperoxide reductases E (AhpE) is a novel subfamily comprising Mycobacterium tuberculosis AhpE and AhpE-like proteins expressed in some bacteria and archaea. We previously reported that MtAhpE reacts ∼104 times faster with an arachidonic acid derived hydroperoxide than with hydrogen peroxide, and suggested that this surprisingly high reactivity was related to the presence of a hydrophobic groove at the dimer interface evidenced in the crystallography structure of the enzyme. In this contribution we experimentally confirmed the existence of an exposed hydrophobic patch in MtAhpE. We found that fatty acid hydroperoxide reduction by the enzyme showed positive activation entropy that importantly contributed to catalysis. Computational dynamics indicated that interactions of fatty acid-derived hydroperoxides with the enzyme properly accommodated them inside the active site and modifies enzyme's dynamics. The computed reaction free energy profile obtained via QM/MM simulations is consistent with a greater reactivity in comparison with hydrogen peroxide. This study represents new insights on the understanding of the molecular basis that determines oxidizing substrate selectivity in the peroxiredoxin family, which has not been investigated at an atomic level so far. © 2015 American Chemical Society.

Registro:

Documento: Artículo
Título:Molecular Basis of Hydroperoxide Specificity in Peroxiredoxins: The Case of AhpE from Mycobacterium tuberculosis
Autor:Zeida, A.; Reyes, A.M.; Lichtig, P.; Hugo, M.; Vazquez, D.S.; Santos, J.; González Flecha, F.L.; Radi, R.; Estrin, D.A.; Trujillo, M.
Filiación:Departamento de Química Inorgánica, Analítica y Química-Física, INQUIMAE, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1053, Argentina
IQUIFIB, UBA-CONICET, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, 1053, Argentina
Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
German Institute of Human Nutrition, University of Potsdam, Germany
Palabras clave:Dimers; Enzymes; Free energy; Hydrogen peroxide; Hydrophobicity; Oxidation; Peroxides; Plants (botany); Activation entropies; Alkyl hydroperoxide; Arachidonic acids; Computational dynamics; Mycobacterium tuberculosis; Organic hydroperoxides; Oxidizing substrates; Reaction free energy; Fatty acids; arachidonic acid; fatty acid; hydrogen peroxide; hydroperoxide; hydroperoxide reductase e; peroxiredoxin; unclassified drug; bacterial protein; peroxiredoxin; Article; binding site; catalysis; conformational transition; controlled study; crystal structure; crystallography; entropy; enzyme activity; enzyme specificity; molecular dynamics; Mycobacterium tuberculosis; nonhuman; priority journal; protein conformation; protein expression; quantum yield; chemistry; enzyme specificity; enzymology; molecular dynamics; protein multimerization; Bacterial Proteins; Molecular Dynamics Simulation; Mycobacterium tuberculosis; Peroxiredoxins; Protein Multimerization; Substrate Specificity
Año:2015
Volumen:54
Número:49
Página de inicio:7237
Página de fin:7247
DOI: http://dx.doi.org/10.1021/acs.biochem.5b00758
Título revista:Biochemistry
Título revista abreviado:Biochemistry
ISSN:00062960
CODEN:BICHA
CAS:arachidonic acid, 506-32-1, 6610-25-9, 7771-44-0; hydrogen peroxide, 7722-84-1; peroxiredoxin, 207137-51-7; Bacterial Proteins; Peroxiredoxins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00062960_v54_n49_p7237_Zeida

Referencias:

  • Han, Y.H., Kwon, J.H., Yu, D.Y., Moon, E.Y., Inhibitory effect of peroxiredoxin II (Prx II) on Ras-ERK-NFkappaB pathway in mouse embryonic fibroblast (MEF) senescence (2006) Free Radical Res., 40, pp. 1182-1189
  • Kim, H., Lee, T.H., Park, E.S., Suh, J.M., Park, S.J., Chung, H.K., Kwon, O.Y., Shong, M., Role of peroxiredoxins in regulating intracellular hydrogen peroxide and hydrogen peroxide-induced apoptosis in thyroid cells (2000) Mol. Endocrinol., 275, pp. 18266-18270
  • Park, J., Lee, S., Kang, S.W., 2-cys peroxiredoxins: Emerging hubs determining redox dependency of Mammalian signaling networks (2014) Int. J. Cell Biol., 2014, pp. 715867-715876
  • Randall, L.M., Ferrer-Sueta, G., Denicola, A., Peroxiredoxins as preferential targets in H2O2-induced signaling (2013) Methods Enzymol., 527, pp. 41-63
  • Rhee, S.G., Chae, H.Z., Kim, K., Peroxiredoxins: A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling (2005) Free Radical Biol. Med., 38, pp. 1543-1552
  • Ummanni, R., Barreto, F., Venz, S., Scharf, C., Barett, C., Mannsperger, H.A., Brase, J.C., Balabanov, S., Peroxiredoxins 3 and 4 are overexpressed in prostate cancer tissue and affect the proliferation of prostate cancer cells in vitro (2012) J. Proteome Res., 11, pp. 2452-2466
  • Dons, L.E., Mosa, A., Rottenberg, M.E., Rosenkrantz, J.T., Kristensson, K., Olsen, J.E., Role of the Listeria monocytogenes 2-Cys peroxiredoxin homologue in protection against oxidative and nitrosative stress and in virulence (2014) Pathog. Dis., 70, pp. 70-74
  • Kaihami, G.H., Almeida, J.R., Santos, S.S., Netto, L.E., Almeida, S.R., Baldini, R.L., Involvement of a 1-Cys peroxiredoxin in bacterial virulence (2014) PLoS Pathog., 10
  • Li, L., Yu, A.Q., The functional role of peroxiredoxin 3 in reactive oxygen species, apoptosis, and chemoresistance of cancer cells (2015) J. Cancer Res. Clin. Oncol., 141, pp. 2071-2077
  • Piacenza, L., Zago, M.P., Peluffo, G., Alvarez, M.N., Basombrio, M.A., Radi, R., Enzymes of the antioxidant network as novel determiners of Trypanosoma cruzi virulence (2009) Int. J. Parasitol., 39, pp. 1455-1464
  • Song, I.S., Kim, H.K., Jeong, S.H., Lee, S.R., Kim, N., Rhee, B.D., Ko, K.S., Han, J., Mitochondrial peroxiredoxin III is a potential target for cancer therapy (2011) Int. J. Mol. Sci., 12, pp. 7163-7185
  • Poole, L.B., The catalytic mechanism of peroxiredoxins (2007) Subcell. Biochem., 44, pp. 61-81
  • Trujillo, M., Ferrer-Sueta, G., Thomson, L., Flohe, L., Radi, R., Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite (2007) Subcell. Biochem., 44, pp. 83-113
  • Trujillo, M., Ferrer-Sueta, G., Radi, R., Kinetic studies on peroxynitrite reduction by peroxiredoxins (2008) Methods Enzymol., 441, pp. 173-196
  • Hofmann, B., Hecht, H.J., Flohe, L., Peroxiredoxins (2002) Biol. Chem., 383, pp. 347-364
  • Sobotta, M.C., Liou, W., Stöcker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A.N.D., Dick, T.P., Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling (2015) Nat. Chem. Biol., 11, pp. 64-70
  • Edwards, J.O., Nucleophillic displacement on oxygen in peroxides (1962) Peroxide Reaction Mechanisms, pp. 67-106. , (Edwards, J. O. Ed.), Interscience, New York
  • Zeida, A., Babbush, R., González Lebrero, M.C., Trujillo, M., Radi, R., Estrin, D.A., Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: Challenging the SN2 paradigm (2012) Chem. Res. Toxicol., 25, pp. 741-746
  • Zeida, A., Reyes, A.M., González Lebrero, M.C., Radi, R., Trujillo, M., Estrin, D.A., The extraordinary catalytic ability of peroxiredoxins: A combined experimental and QM/MM study on the fast thiol oxidation step (2014) Chem. Commun., 50, pp. 10070-10073
  • Hall, A., Parsonage, D., Poole, L.B., Karplus, P.A., Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization (2010) J. Mol. Biol., 402, pp. 194-209
  • Nagy, P., Karton, A., Betz, A., Peskin, A.V., Pace, P., O'Reilly, R.J., Hampton, M.B., Winterbourn, C.C., Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: A kinetic and computational study (2011) J. Biol. Chem., 286, pp. 18048-18055
  • Portillo-Ledesma, S., Sardi, F., Manta, B., Tourn, M.V., Clippe, A., Knoops, B., Alvarez, B., Ferrer-Sueta, G., Deconstructing the catalytic efficiency of peroxiredoxin-5 peroxidatic cysteine (2014) Biochemistry, 53, pp. 6113-6125
  • Nelson, K.J., Knutson, S.T., Soito, L., Klomsiri, C., Poole, L.B., Fetrow, J.S., Analysis of the peroxiredoxin family: Using active-site structure and sequence information for global classification and residue analysis (2011) Proteins: Struct., Funct., Genet., 79, pp. 947-964
  • Soito, L., Williamson, C., Knutson, S.T., Fetrow, J.S., Poole, L.B., Nelson, K.J., PREX: PeroxiRedoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family (2011) Nucleic Acids Res., 39, pp. D332-D337
  • Aden, J., Wallgren, M., Storm, P., Weise, C.F., Christiansen, A., Schroder, W.P., Funk, C., Wolf-Watz, M., Extraordinary μs-ms backbone dynamics in Arabidopsis thaliana peroxiredoxin Q (2011) Biochim. Biophys. Acta, Proteins Proteomics, 1814, pp. 1880-1890
  • Trindade, D.F., Cerchiaro, G., Augusto, O., A role for peroxymonocarbonate in the stimulation of biothiol peroxidation by the bicarbonate/carbon dioxide pair (2006) Chem. Res. Toxicol., 19, pp. 1475-1482
  • Bryk, R., Griffin, P., Nathan, C., Peroxynitrite reductase activity of bacterial peroxiredoxins (2000) Nature, 407, pp. 211-215
  • Manta, B., Hugo, M., Ortiz, C., Ferrer-Sueta, G., Trujillo, M., Denicola, A., The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2 (2009) Arch. Biochem. Biophys., 484, pp. 146-154
  • Ogusucu, R., Rettori, D., Munhoz, D.C., Netto, L.E., Augusto, O., Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: Rate constants by competitive kinetics (2007) Free Radical Biol. Med., 42, pp. 326-334
  • Parsonage, D., Karplus, P.A., Poole, L.B., Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 8209-8214
  • Pineyro, M.D., Arcari, T., Robello, C., Radi, R., Trujillo, M., Tryparedoxin peroxidases from Trypanosoma cruzi: High efficiency in the catalytic elimination of hydrogen peroxide and peroxynitrite (2011) Arch. Biochem. Biophys., 507, pp. 287-295
  • Dubuisson, M., Vander Stricht, D., Clippe, A., Etienne, F., Nauser, T., Kissner, R., Koppenol, W.H., Knoops, B., Human peroxiredoxin 5 is a peroxynitrite reductase (2004) FEBS Lett., 571, pp. 161-165
  • Trujillo, M., Clippe, A., Manta, B., Ferrer-Sueta, G., Smeets, A., Declercq, J.P., Knoops, B., Radi, R., Pre-steady state kinetic characterization of human peroxiredoxin 5: Taking advantage of Trp84 fluorescence increase upon oxidation (2007) Arch. Biochem. Biophys., 467, pp. 95-106
  • Baker, L.M., Poole, L.B., Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61 (2003) J. Biol. Chem., 278, pp. 9203-9211
  • Perkins, A., Poole, L.B., Karplus, P.A., Tuning of peroxiredoxin catalysis for various physiological roles (2014) Biochemistry, 53, pp. 7693-7705
  • Declercq, J.P., Evrard, C., Clippe, A., Stricht, D.V., Bernard, A., Knoops, B., Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 A resolution (2001) J. Mol. Biol., 311, pp. 751-759
  • Flohé, L., Toppo, S., Cozza, G., Ursini, F., A Comparison of Thiol Peroxidase Mechanisms (2011) Antioxid. Redox Signaling, 15, pp. 763-780
  • Hugo, M., Turell, L., Manta, B., Botti, H., Monteiro, G., Netto, L.E., Alvarez, B., Trujillo, M., Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: Kinetics, acidity constants, and conformational dynamics (2009) Biochemistry, 48, pp. 9416-9426
  • Reyes, A.M., Hugo, M., Trostchansky, A., Capece, L., Radi, R., Trujillo, M., Oxidizing substrate specificity of Mycobacterium tuberculosis alkyl hydroperoxide reductase E: Kinetics and mechanisms of oxidation and overoxidation (2011) Free Radical Biol. Med., 51, pp. 464-473
  • Li, S., Peterson, N.A., Kim, M.Y., Kim, C.Y., Hung, L.W., Yu, M., Lekin, T., Baker, E.N., Crystal structure of AhpE from Mycobacterium tuberculosis, a 1-Cys peroxiredoxin (2005) J. Mol. Biol., 346, pp. 1035-1046
  • Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M.R., Appel, R.D., Bairoch, A., (2005) Protein Identification and Analysis Tools on the ExPASy Server, , Springer, New York
  • DeGray, J.A., Gunther, M.R., Tschirret-Guth, R., Ortiz De Montellano, P.R., Mason, R.P., Peroxidation of a specific tryptophan of metmyoglobin by hydrogen peroxide (1997) J. Biol. Chem., 272, pp. 2359-2362
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J. Chem. Phys., 79, pp. 926-935
  • Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E., Debolt, S., Ferguson, D., Kollman, P., AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules (1995) Comput. Phys. Commun., 91, pp. 1-41
  • Gauto, D.F., Di Lella, S., Guardia, C.M.A., Estrin, D.A., Martí, M.A., Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy (2009) J. Phys. Chem. B, 113, pp. 8717-8724
  • Rastelli, G., Rio, A.D., Degliesposti, G., Sgobba, M., Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA (2010) J. Comput. Chem., 31, pp. 797-810
  • González Lebrero, M.C., Estrin, D.A., QM-MM investigation of the reaction of peroxynitrite with carbon dioxide in water (2007) J. Chem. Theory Comput., 3, pp. 1405-1411
  • Nitsche, M.A., Ferreria, M., Mocskos, E.E., González Lebrero, M.C., GPU accelerated implementation of density functional theory for hybrid QM/MM simulations (2014) J. Chem. Theory Comput., 10, pp. 959-967
  • Crespo, A., Scherlis, D.A., Martí, M.A., Ordejón, P., Roitberg, A.E., Estrin, D.A., A DFT-Based QM-MM Approach Designed for the Treatment of Large Molecular Systems: Application to Chorismate Mutase (2003) J. Phys. Chem. B, 107, pp. 13728-13736
  • Kästner, J., Thiel, W., Bridging the gap between thermodynamic integration and umbrella sampling provides a novel analysis method:"Umbrella integration (2005) J. Chem. Phys., 123, p. 144104
  • Kästner, J., Thiel, W., Analysis of the statistical error in umbrella sampling simulations by umbrella integration (2006) J. Chem. Phys., 124, p. 234106
  • Humphrey, W., Dalke, A., Schulten, K., VMD: Visual molecular dynamics (1996) J. Mol. Graphics, 14, pp. 33-38
  • Aldini, G., Regazzoni, L., Orioli, M., Rimoldi, I., Facino, R.M., Carini, M., A tandem MS precursor-ion scan approach to identify variable covalent modification of albumin Cys34: A new tool for studying vascular carbonylation (2008) J. Mass Spectrom., 43, pp. 1470-1481
  • Matulis, D., Lovrien, R., 1-anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation (1998) Biophys. J., 74, pp. 422-429
  • Cattoni, D.I., Kaufman, S.B., González Flecha, F.L., Kinetics and thermodynamics of the interaction of 1-anilino-naphthalene-8-sulfonate with proteins (2009) Biochim. Biophys. Acta, Proteins Proteomics, 1794, pp. 1700-1708
  • Collini, M., D'Alfonso, L., Molinari, H., Ragona, L., Catalano, M., Baldini, G., Competitive binding of fatty acids and the fluorescent probe 1-8-anilinonaphthalene sulfonate to bovine β-lactoglobulin (2003) Protein Sci., 12, pp. 1596-1603
  • Roman, E.A., Argüello, J.M., González Flecha, F.L., Reversible unfolding of a thermophilic membrane protein in phospholipid/detergent mixed micelles (2010) J. Mol. Biol., 397, pp. 550-559
  • Shi, L., Palleros, D.R., Fink, A.L., Protein conformational changes induced by 1,1′-Bis(4-anilino-5-naphthalenesulfonic acid): Preferential binding to the molten globule of DnaK (1994) Biochemistry, 33, pp. 7536-7546
  • Zeida, A., González Lebrero, M.C., Radi, R., Trujillo, M., Estrin, D.A., Mechanism of cysteine oxidation by peroxynitrite: An integrated experimental and theoretical study (2013) Arch. Biochem. Biophys., 539, pp. 81-86
  • Moore, S., Jencks, W., Formation of active site thiol esters of CoA transferase and the dependence of catalysis on specific binding interactions (1982) J. Biol. Chem., 257, p. 10893
  • Jencks, W.P., Reaction mechanisms, catalysis, and movement (1994) Protein Sci., 3, pp. 2459-2464
  • Wu, N., Mo, Y., Gao, J., Pai, E.F., Electrostatic stress in catalysis: Structure and mechanism of the enzyme orotidine monophosphate decarboxylase (2000) Proc. Natl. Acad. Sci. U. S. A., 97, pp. 2017-2022
  • Hou, T., Wang, J., Li, Y., Wang, W., Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. the accuracy of binding free energy calculations based on molecular dynamics simulations (2010) J. Chem. Inf. Model., 51, pp. 69-82
  • Hall, A., Sankaran, B., Poole, L.B., Karplus, P.A., Structural changes common to catalysis in the Tpx peroxiredoxin subfamily (2009) J. Mol. Biol., 393, pp. 867-881
  • Salsbury, F.R., Yuan, Y., Knaggs, M.H., Poole, L.B., Fetrow, J.S., Structural and electrostatic asymmetry at the active site in typical and atypical peroxiredoxin dimers (2012) J. Phys. Chem. B, 116, pp. 6832-6843
  • Yuan, Y., Knaggs, M.H., Poole, L.B., Fetrow, J.S., Salsbury, F.R., Conformational and oligomeric effects on the cysteine pKa of tryparedoxin peroxidase (2010) J. Biomol. Struct. Dyn., 28, pp. 51-70
  • Budde, H., Flohé, L., Hecht, H.-J., Hofmann, B., Stehr, M., Wissing, J., Lünsdorf, H., Kinetics and redox-sensitive oligomerisation reveal negative subunit cooperativity in tryparedoxin peroxidase of Trypanosoma brucei brucei (2003) Biol. Chem., 384, pp. 619-633
  • Haynes, A.C., Qian, J., Reisz, J.A., Furdui, C.M., Lowther, W.T., Molecular basis for the resistance of human mitochondrial 2-Cys peroxiredoxin 3 to hyperoxidation (2013) J. Biol. Chem., 288, pp. 29714-29723
  • Nakamura, T., Kado, Y., Yamaguchi, T., Matsumura, H., Ishikawa, K., Inoue, T., Crystal structure of peroxiredoxin from Aeropyrum pernix K1 complexed with its substrate, hydrogen peroxide (2010) J. Biochem., 147, pp. 109-115
  • Hall, A., Nelson, K., Poole, L.B., Karplus, P.A., Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins (2011) Antioxid. Redox Signaling, 15, pp. 795-815
  • Porter, N., Caldwell, S., Mills, K., Mechanisms of free radical oxidation of unsaturated lipids (1995) Lipids, 30, pp. 277-290
  • Radi, R., Beckman, J.S., Bush, K.M., Freeman, B.A., Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide (1991) Arch. Biochem. Biophys., 288, pp. 481-487
  • Bonney, R.J., Opas, E.E., Humes, J.L., Lipoxygenase pathways of macrophages (1985) Fed. Proc., 44, pp. 2933-2936
  • Parsonage, D., Nelson, K.J., Ferrer-Sueta, G., Alley, S., Karplus, P.A., Furdui, C.M., Poole, L.B., Dissecting peroxiredoxin catalysis: Separating binding, peroxidation, and resolution for a bacterial AhpC (2015) Biochemistry, 54, pp. 1567-1575
  • Ferrer-Sueta, G., Manta, B., Botti, H., Radi, R., Trujillo, M., Denicola, A., Factors affecting protein thiol reactivity and specificity in peroxide reduction (2011) Chem. Res. Toxicol., 24, pp. 434-450

Citas:

---------- APA ----------
Zeida, A., Reyes, A.M., Lichtig, P., Hugo, M., Vazquez, D.S., Santos, J., González Flecha, F.L.,..., Trujillo, M. (2015) . Molecular Basis of Hydroperoxide Specificity in Peroxiredoxins: The Case of AhpE from Mycobacterium tuberculosis. Biochemistry, 54(49), 7237-7247.
http://dx.doi.org/10.1021/acs.biochem.5b00758
---------- CHICAGO ----------
Zeida, A., Reyes, A.M., Lichtig, P., Hugo, M., Vazquez, D.S., Santos, J., et al. "Molecular Basis of Hydroperoxide Specificity in Peroxiredoxins: The Case of AhpE from Mycobacterium tuberculosis" . Biochemistry 54, no. 49 (2015) : 7237-7247.
http://dx.doi.org/10.1021/acs.biochem.5b00758
---------- MLA ----------
Zeida, A., Reyes, A.M., Lichtig, P., Hugo, M., Vazquez, D.S., Santos, J., et al. "Molecular Basis of Hydroperoxide Specificity in Peroxiredoxins: The Case of AhpE from Mycobacterium tuberculosis" . Biochemistry, vol. 54, no. 49, 2015, pp. 7237-7247.
http://dx.doi.org/10.1021/acs.biochem.5b00758
---------- VANCOUVER ----------
Zeida, A., Reyes, A.M., Lichtig, P., Hugo, M., Vazquez, D.S., Santos, J., et al. Molecular Basis of Hydroperoxide Specificity in Peroxiredoxins: The Case of AhpE from Mycobacterium tuberculosis. Biochemistry. 2015;54(49):7237-7247.
http://dx.doi.org/10.1021/acs.biochem.5b00758