Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The nonstructural NS1 protein is an essential virulence factor of the human respiratory syncytial virus, with a predominant role in the inhibition of the host antiviral innate immune response. This inhibition is mediated by multiple protein-protein interactions and involves the formation of large oligomeric complexes. There is neither a structure nor sequence or functional homologues of this protein, which points to a distinctive mechanism for blocking the interferon response among viruses. The NS1 native monomer follows a simple unfolding kinetics via a nativelike transition state ensemble, with a half-life of 45 min, in agreement with a highly stable core structure at equilibrium. Refolding is a complex process that involves several slowly interconverting species compatible with proline isomerization. However, an ultrafast folding event with a half-life of 0.2 ms is indicative of a highly folding compatible species within the unfolded state ensemble. On the other hand, the oligomeric assembly route from the native monomer, which does not involve unfolding, shows a monodisperse and irreversible end-point species triggered by a mild temperature change, with half-lives of 160 and 26 min at 37 and 47 °C, respectively, and at a low protein concentration (10 μM). A large secondary structure change into β-sheet structure and the formation of a dimeric nucleus precede polymerization by the sequential addition of monomers at the surprisingly low rate of one monomer every 34 s. The polymerization phase is followed by the binding to thioflavin-T indicative of amyloid-like, albeit soluble, repetitive β-sheet quaternary structure. The overall process is reversible only up until ∼8 min, a time window in which most of the secondary structure change takes place. NS1s multiple binding activities must be accommodated in a few binding interfaces at most, something to be considered remarkable given its small size (15 kDa). Thus, conformational heterogeneity, and in particular oligomer formation, may provide a means of expand its binding repertoire. These equilibria will be determined by variables such as macromolecular crowding, protein-protein interactions, expression levels, turnover, or specific subcellular localization. The irreversible and quasi-spontaneous nature of the oligomer assembly, together with the fact that NS1 is the most abundant viral protein in infected cells, makes its accumulation highly conceivable under conditions compatible with the cellular milieu. The implications of NS1 oligomers in the viral life cycle and the inhibition of host innate immune response remain to be determined. © 2015 American Chemical Society.

Registro:

Documento: Artículo
Título:Conformational Heterogeneity Determined by Folding and Oligomer Assembly Routes of the Interferon Response Inhibitor NS1 Protein, Unique to Human Respiratory Syncytial Virus
Autor:Pretel, E.; Sánchez, I.E.; Fassolari, M.; Chemes, L.B.; De Prat-Gay, G.
Filiación:Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, 1405, Argentina
Protein Physiology Laboratory, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, IQUIBICEN-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
Ciência Sem Fronteiras Senior Fellow, CNPq, Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Palabras clave:Antibiotics; Conformations; Glycoproteins; Immune system; Life cycle; Monomers; Oligomers; Polymerization; Viruses; Conformational heterogeneity; Innate immune response; Macromolecular crowding; Protein concentrations; Protein-protein interactions; Respiratory syncytial virus; Subcellular localizations; Transition state ensembles; Proteins; amyloid; monomer; nonstructural protein 1; oligomer; interferon; protein binding; virus protein; Article; beta sheet; binding affinity; cellular distribution; controlled study; half life time; Human respiratory syncytial virus; isomerization; macromolecular crowding; nonhuman; observed rate constant; oligomerization; polymerization; priority journal; protein assembly; protein binding; protein conformation; protein folding; protein metabolism; protein protein interaction; protein quaternary structure; protein secondary structure; protein unfolding; temperature; chemistry; enzyme specificity; human; Human respiratory syncytial virus; kinetics; metabolism; physiology; protein folding; protein multimerization; protein refolding; solubility; species difference; Human respiratory syncytial virus; Humans; Interferons; Kinetics; Protein Binding; Protein Folding; Protein Multimerization; Protein Refolding; Protein Structure, Quaternary; Protein Unfolding; Respiratory Syncytial Virus, Human; Solubility; Species Specificity; Substrate Specificity; Temperature; Viral Nonstructural Proteins
Año:2015
Volumen:54
Número:33
Página de inicio:5136
Página de fin:5146
DOI: http://dx.doi.org/10.1021/acs.biochem.5b00615
Título revista:Biochemistry
Título revista abreviado:Biochemistry
ISSN:00062960
CODEN:BICHA
CAS:amyloid, 11061-24-8; Interferons; Viral Nonstructural Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00062960_v54_n33_p5136_Pretel

Referencias:

  • Lamb, R.A., Parks, G.D., Paramyxoviridae: The viruses and Their Replication (2007) Fields in Virology, 1, pp. 1449-1496. , (Knipe, D. M. and Howley, P. M. Eds.) Chapter 41, pp, Lippincott Williams & Wilkins, Philadelphia
  • Welliver, R.C., Respiratory syncytial virus infection: Therapy and prevention (2004) Paediatr Respir Rev., 5, pp. 127-S133
  • Jafri, H.S., Chavez-Bueno, S., Mejias, A., Gomez, A.M., Rios, A.M., Nassi, S.S., Yusuf, M., Ramilo, O., Respiratory syncytial virus induces pneumonia, cytokine response, airway obstruction, and chronic inflammatory infiltrates associated with long-term airway hyperresponsiveness in mice (2004) J. Infect. Dis., 189, pp. 1856-1865
  • Empey, K.M., Peebles, Jr.R.S., Kolls, J.K., Pharmacologic advances in the treatment and prevention of respiratory syncytial virus (2010) Clin. Infect. Dis., 50, pp. 1258-1267
  • Collins, P.L., Melero, J.A., Progress in understanding and controlling respiratory syncytial virus: Still crazy after all these years (2011) Virus Res., 162, pp. 80-99
  • Myong, S., Cui, S., Cornish, P.V., Kirchhofer, A., Gack, M.U., Jung, J.U., Hopfner, K.P., Ha, T., Cytosolic viral sensor RIG-I is a 5′-triphosphate-dependent translocase on double-stranded RNA (2009) Science, 323, pp. 1070-1074
  • Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K.J., Akira, S., IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type i interferon induction (2005) Nat. Immunol., 6, pp. 981-988
  • Hou, F., Sun, L., Zheng, H., Skaug, B., Jiang, Q.X., Chen, Z.J., MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response (2011) Cell, 146, pp. 448-461
  • Basler, C.F., Garcia-Sastre, A., Viruses and the type i interferon antiviral system: Induction and evasion (2002) Int. Rev. Immunol., 21, pp. 305-337
  • Randall, R.E., Goodbourn, S., Interferons and viruses: An interplay between induction, signalling, antiviral responses and virus countermeasures (2008) J. Gen. Virol., 89, pp. 1-47
  • Parks, G.D., Alexander-Miller, M.A., Paramyxovirus activation and inhibition of innate immune responses (2013) J. Mol. Biol., 425, pp. 4872-4892
  • Collins, P.L., Crowe, J.E., Respiratory syncytial virus and metapneumovirus (2007) Fields Virology, pp. 1601-1646. , (Knipe, D. M. and Howley, P. M. Eds.) pp, Lippincott Williams & Wilkins, Philadelphia
  • Spann, K.M., Tran, K.C., Chi, B., Rabin, R.L., Collins, P.L., Suppression of the induction of alpha, beta, and lambda interferons by the NS1 and NS2 proteins of human respiratory syncytial virus in human epithelial cells and macrophages [corrected] (2004) J. Virol, 78, pp. 4363-4369
  • Spann, K.M., Tran, K.C., Collins, P.L., Effects of nonstructural proteins NS1 and NS2 of human respiratory syncytial virus on interferon regulatory factor 3, NF-kappaB, and proinflammatory cytokines (2005) J. Virol, 79, pp. 5353-5362
  • Lo, M.S., Brazas, R.M., Holtzman, M.J., Respiratory syncytial virus nonstructural proteins NS1 and NS2 mediate inhibition of Stat2 expression and alpha/beta interferon responsiveness (2005) J. Virol, 79, pp. 9315-9319
  • Bossert, B., Conzelmann, K.K., Respiratory syncytial virus (RSV) nonstructural (NS) proteins as host range determinants: A chimeric bovine RSV with NS genes from human RSV is attenuated in interferon-competent bovine cells (2002) J. Virol, 76, pp. 4287-4293
  • Ramaswamy, M., Shi, L., Varga, S.M., Barik, S., Behlke, M.A., Look, D.C., Respiratory syncytial virus nonstructural protein 2 specifically inhibits type i interferon signal transduction (2006) Virology, 344, pp. 328-339
  • Gotoh, B., Komatsu, T., Takeuchi, K., Yokoo, J., Paramyxovirus accessory proteins as interferon antagonists (2001) Microbiol. Immunol., 45, pp. 787-800
  • Swedan, S., Musiyenko, A., Barik, S., Respiratory syncytial virus nonstructural proteins decrease levels of multiple members of the cellular interferon pathways (2009) J. Virol, 83, pp. 9682-9693
  • Swedan, S., Andrews, J., Majumdar, T., Musiyenko, A., Barik, S., Multiple functional domains and complexes of the two nonstructural proteins of human respiratory syncytial virus contribute to interferon suppression and cellular location (2011) J. Virol, 85, pp. 10090-10100
  • Wu, W., Tran, K.C., Teng, M.N., Heesom, K.J., Matthews, D.A., Barr, J.N., Hiscox, J.A., The interactome of the human respiratory syncytial virus NS1 protein highlights multiple effects on host cell biology (2012) J. Virol, 86, pp. 7777-7789
  • Hastie, M.L., Headlam, M.J., Patel, N.B., Bukreyev, A.A., Buchholz, U.J., Dave, K.A., Norris, E.L., Gorman, J.J., The human respiratory syncytial virus nonstructural protein 1 regulates type i and type II interferon pathways (2012) Mol. Cell. Proteomics, 11, pp. 108-127
  • Ling, Z., Tran, K.C., Teng, M.N., Human respiratory syncytial virus nonstructural protein NS2 antagonizes the activation of beta interferon transcription by interacting with RIG-I (2009) J. Virol, 83, pp. 3734-3742
  • Boyapalle, S., Wong, T., Garay, J., Teng, M., San Juan-Vergara, H., Mohapatra, S., Respiratory syncytial virus NS1 protein colocalizes with mitochondrial antiviral signaling protein MAVS following infection (2012) PLoS One, 7, p. 29386
  • Elliott, J., Lynch, O.T., Suessmuth, Y., Qian, P., Boyd, C.R., Burrows, J.F., Buick, R., Johnston, J.A., Respiratory syncytial virus NS1 protein degrades STAT2 by using the Elongin-Cullin E3 ligase (2007) J. Virol, 81, pp. 3428-3436
  • Atreya, P.L., Peeples, M.E., Collins, P.L., The NS1 protein of human respiratory syncytial virus is a potent inhibitor of minigenome transcription and RNA replication (1998) J. Virol, 72, pp. 1452-1461
  • Ling, Z., Tran, K.C., Arnold, J.J., Teng, M.N., Purification and characterization of recombinant human respiratory syncytial virus nonstructural protein NS1 (2008) Protein Expression Purif., 57, pp. 261-270
  • Pretel, E., Camporeale, G., De Prat-Gay, G., The non-structural NS1 protein unique to respiratory syncytial virus: A two-state folding monomer in quasi-equilibrium with a stable spherical oligomer (2013) PLoS One, 8, p. 74338
  • Goswami, R., Majumdar, T., Dhar, J., Chattopadhyay, S., Bandyopadhyay, S.K., Verbovetskaya, V., Sen, G.C., Barik, S., Viral degradasome hijacks mitochondria to suppress innate immunity (2013) Cell Res., 23, pp. 1025-1042
  • Buchner, J., Kiefhaber, T., (2005) Protein Folding Handbook, 3, pp. 379-410. , Wiley-VCH, Weinheim, Germany
  • Myers, J.K., Pace, C.N., Scholtz, J.M., Denaturant m values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding (1995) Protein Sci., 4, pp. 2138-2148
  • Sanchez, I.E., Kiefhaber, T., Evidence for sequential barriers and obligatory intermediates in apparent two-state protein folding (2003) J. Mol. Biol., 325, pp. 367-376
  • Zlotnick, A., Johnson, J.M., Wingfield, P.W., Stahl, S.J., Endres, D., A theoretical model successfully identifies features of hepatitis B virus capsid assembly (1999) Biochemistry, 38, pp. 14644-14652
  • Chemes, L.B., Noval, M.G., Sanchez, I.E., De Prat-Gay, G., Folding of a cyclin box: Linking multitarget binding to marginal stability, oligomerization, and aggregation of the retinoblastoma tumor suppressor AB pocket domain (2013) J. Biol. Chem., 288, pp. 18923-18938
  • Tsytlonok, M., Itzhaki, L.S., The how's and why's of protein folding intermediates (2013) Arch. Biochem. Biophys., 531, pp. 14-23
  • Reimer, U., Scherer, G., Drewello, M., Kruber, S., Schutkowski, M., Fischer, G., Side-chain effects on peptidyl-prolyl cis/trans isomerisation (1998) J. Mol. Biol., 279, pp. 449-460
  • Brandts, J.F., Halvorson, H.R., Brennan, M., Consideration of the Possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues (1975) Biochemistry, 14, pp. 4953-4963
  • Kiefhaber, T., Quaas, R., Hahn, U., Schmid, F.X., Folding of ribonuclease T1. 1. Existence of multiple unfolded states created by proline isomerization (1990) Biochemistry, 29, pp. 3053-3061
  • Kiefhaber, T., Schmid, F.X., Kinetic coupling between protein folding and prolyl isomerization. II. Folding of ribonuclease A and ribonuclease T1 (1992) J. Mol. Biol., 224, pp. 231-240
  • Smal, C., Alonso, L.G., Wetzler, D.E., Heer, A., De Prat Gay, G., Ordered self-assembly mechanism of a spherical oncoprotein oligomer triggered by zinc removal and stabilized by an intrinsically disordered domain (2012) PLoS One, 7, p. 36457

Citas:

---------- APA ----------
Pretel, E., Sánchez, I.E., Fassolari, M., Chemes, L.B. & De Prat-Gay, G. (2015) . Conformational Heterogeneity Determined by Folding and Oligomer Assembly Routes of the Interferon Response Inhibitor NS1 Protein, Unique to Human Respiratory Syncytial Virus. Biochemistry, 54(33), 5136-5146.
http://dx.doi.org/10.1021/acs.biochem.5b00615
---------- CHICAGO ----------
Pretel, E., Sánchez, I.E., Fassolari, M., Chemes, L.B., De Prat-Gay, G. "Conformational Heterogeneity Determined by Folding and Oligomer Assembly Routes of the Interferon Response Inhibitor NS1 Protein, Unique to Human Respiratory Syncytial Virus" . Biochemistry 54, no. 33 (2015) : 5136-5146.
http://dx.doi.org/10.1021/acs.biochem.5b00615
---------- MLA ----------
Pretel, E., Sánchez, I.E., Fassolari, M., Chemes, L.B., De Prat-Gay, G. "Conformational Heterogeneity Determined by Folding and Oligomer Assembly Routes of the Interferon Response Inhibitor NS1 Protein, Unique to Human Respiratory Syncytial Virus" . Biochemistry, vol. 54, no. 33, 2015, pp. 5136-5146.
http://dx.doi.org/10.1021/acs.biochem.5b00615
---------- VANCOUVER ----------
Pretel, E., Sánchez, I.E., Fassolari, M., Chemes, L.B., De Prat-Gay, G. Conformational Heterogeneity Determined by Folding and Oligomer Assembly Routes of the Interferon Response Inhibitor NS1 Protein, Unique to Human Respiratory Syncytial Virus. Biochemistry. 2015;54(33):5136-5146.
http://dx.doi.org/10.1021/acs.biochem.5b00615