Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The E7 protein from high-risk human papillomavirus is essential for cell transformation in cervical, oropharyngeal, and other HPV-related cancers, mainly through the inactivation of the retinoblastoma (Rb) tumor suppressor. Its high cysteine content (∼7%) and the observation that HPV-transformed cells are under oxidative stress prompted us to investigate the redox properties of the HPV16 E7 protein under biologically compatible oxidative conditions. The seven cysteines in HPV16 E7 remain reduced in conditions resembling the basal reduced state of a cell. However, under oxidative stress, a stable disulfide bridge forms between cysteines 59 and 68. Residue 59 has a protective effect on the other cysteines, and its mutation leads to an overall increase in the oxidation propensity of E7, including cysteine 24 central to the Rb binding motif. Gluthationylation of Cys 24 abolishes Rb binding, which is reversibly recovered upon reduction. Cysteines 59 and 68 are located 18.6 Å apart, and the formation of the disulfide bridge leads to a large structural rearrangement while retaining strong Zn association. These conformational and covalent changes are fully reversible upon restoration of the reductive environment. In addition, this is the first evidence of an interaction between the N-terminal intrinsically disordered and the C-terminal globular domains, known to be highly and separately conserved among human papillomaviruses. The significant conservation of such noncanonical cysteines in HPV E7 proteins leads us to propose a functional redox activity. Such an activity adds to the previously discovered chaperone activity of E7 and supports the picture of a moonlighting pathological role of this paradigmatic viral oncoprotein. © 2014 American Chemical Society.

Registro:

Documento: Artículo
Título:Cysteine-rich positions outside the structural zinc motif of human papillomavirus E7 provide conformational modulation and suggest functional redox roles
Autor:Chemes, L.B.; Camporeale, G.; Sánchez, I.E.; De Prat-Gay, G.; Alonso, L.G.
Filiación:Protein Structure-Function and Engineering Laboratory, Fundaciòn Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales and IQUIBICEN-CONICET, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
Palabras clave:Covalent bonds; Proteins; Redox reactions; Rubidium; Tissue culture; Zinc; Cell transformation; Chaperone activity; Disulfide bridge; Human papillomavirus; Oxidative conditions; Protective effects; Retinoblastoma tumors; Structural rearrangement; Amino acids; Amino Acid Motifs; Amino Acid Sequence; Cysteine; Human papillomavirus 16; Humans; Models, Molecular; Molecular Sequence Data; Oxidative Stress; Papillomavirus E7 Proteins; Papillomavirus Infections; Sequence Alignment; Zinc Fingers
Año:2014
Volumen:53
Número:10
Página de inicio:1680
Página de fin:1696
DOI: http://dx.doi.org/10.1021/bi401562e
Título revista:Biochemistry
Título revista abreviado:Biochemistry
ISSN:00062960
CODEN:BICHA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00062960_v53_n10_p1680_Chemes

Referencias:

  • Zur Hausen, H., Papillomavirus infectionsî - ̧a major cause of human cancers (1996) Biochim. Biophys. Acta, 1288, pp. 55-78
  • Munoz, N., Bosch, F.X., De Sanjose, S., Herrero, R., Castellsague, X., Shah, K.V., Snijders, P.J., Meijer, C.J., Epidemiologic classification of human papillomavirus types associated with cervical cancer (2003) N. Engl. J. Med., 348, pp. 518-527
  • Bernard, H.U., Burk, R.D., Chen, Z., Van Doorslaer, K., Zur Hausen, H., De Villiers, E.M., Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments (2010) Virology, 401, pp. 70-79
  • Schiffman, M., Herrero, R., Desalle, R., Hildesheim, A., Wacholder, S., Rodriguez, A.C., Bratti, M.C., Burk, R.D., The carcinogenicity of human papillomavirus types reflects viral evolution (2005) Virology, 337, pp. 76-84
  • Doorbar, J., The papillomavirus life cycle (2005) J. Clin. Virol., 32 (SUPPL. 1), pp. 7-15
  • Howley, P.M., (1996) Fields Virology, , 3 rd ed. Raven Publishers, Philadelphia
  • Helt, A.M., Funk, J.O., Galloway, D.A., Inactivation of both the retinoblastoma tumor suppressor and p21 by the human papillomavirus type 16 E7 oncoprotein is necessary to inhibit cell cycle arrest in human epithelial cells (2002) J. Virol., 76, pp. 10559-10568
  • Banerjee, N.S., Genovese, N.J., Noya, F., Chien, W.M., Broker, T.R., Chow, L.T., Conditionally activated E7 proteins of high-risk and low-risk human papillomaviruses induce S phase in postmitotic, differentiated human keratinocytes (2006) J. Virol., 80, pp. 6517-6524
  • Moody, C.A., Laimins, L.A., Human papillomavirus oncoproteins: Pathways to transformation (2010) Nat. Rev. Cancer, 10, pp. 550-560
  • Pim, D., Banks, L., Interaction of viral oncoproteins with cellular target molecules: Infection with high-risk vs low-risk human papillomaviruses (2010) APMIS, 118, pp. 471-493
  • Dyson, N., Howley, P.M., Munger, K., Harlow, E., The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product (1989) Science, 243, pp. 934-937
  • Munger, K., Howley, P.M., Human papillomavirus immortalization and transformation functions (2002) Virus Res, 89, pp. 213-228
  • Munger, K., Werness, B.A., Dyson, N., Phelps, W.C., Harlow, E., Howley, P.M., Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product (1989) EMBO J., 8, pp. 4099-4105
  • Heck, D.V., Yee, C.L., Howley, P.M., Munger, K., Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses (1992) Proc. Natl. Acad. Sci. U.S.A., 89, pp. 4442-4446
  • Crook, T., Morgenstern, J.P., Crawford, L., Banks, L., Continued expression of HPV-16 E7 protein is required for maintenance of the transformed phenotype of cells co-transformed by HPV-16 plus EJ-ras (1989) EMBO J., 8, pp. 513-519
  • De Marco, F., Bucaj, E., Foppoli, C., Fiorini, A., Blarzino, C., Filipi, K., Giorgi, A., Perluigi, M., Oxidative stress in HPV-driven viral carcinogenesis: Redox proteomics analysis of HPV-16 dysplastic and neoplastic tissues (2012) PLoS One, 7, p. 34366
  • De Marco, F., Oxidative stress and HPV carcinogenesis (2013) Viruses, 5, pp. 708-731
  • Williams, V.M., Filippova, M., Soto, U., Duerksen-Hughes, P.J., HPV-DNA integration and carcinogenesis: Putative roles for inflammation and oxidative stress (2011) Future Virol., 6, pp. 45-57
  • Mileo, A.M., Abbruzzese, C., Mattarocci, S., Bellacchio, E., Pisano, P., Federico, A., Maresca, V., Paggi, M.G., Human papillomavirus-16 E7 interacts with glutathione S-transferase P1 and enhances its role in cell survival (2009) PLoS One, 4, p. 7254
  • Alonso, L.G., Garcia-Alai, M.M., Nadra, A.D., Lapena, A.N., Almeida, F.L., Gualfetti, P., Prat-Gay, G.D., High-risk (HPV16) human papillomavirus E7 oncoprotein is highly stable and extended, with conformational transitions that could explain its multiple cellular binding partners (2002) Biochemistry, 41, pp. 10510-10518
  • Ohlenschlager, O., Seiboth, T., Zengerling, H., Briese, L., Marchanka, A., Ramachandran, R., Baum, M., Gorlach, M., Solution structure of the partially folded high-risk human papilloma virus 45 oncoprotein E7 (2006) Oncogene, 25, pp. 5953-5959
  • Liu, X., Clements, A., Zhao, K., Marmorstein, R., Structure of the human Papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor (2006) J. Biol. Chem., 281, pp. 578-586
  • Garcia-Alai, M.M., Alonso, L.G., De Prat-Gay, G., The N-terminal module of HPV16 E7 is an intrinsically disordered domain that confers conformational and recognition plasticity to the oncoprotein (2007) Biochemistry, 46, pp. 10405-10412
  • Clements, A., Johnston, K., Mazzarelli, J.M., Ricciardi, R.P., Marmorstein, R., Oligomerization properties of the viral oncoproteins adenovirus E1A and human papillomavirus E7 and their complexes with the retinoblastoma protein (2000) Biochemistry, 39, pp. 16033-16045
  • Chemes, L.B., Glavina, J., Alonso, L.G., Marino-Buslje, C., De Prat-Gay, G., Sanchez, I.E., Sequence evolution of the intrinsically disordered and globular domains of a model viral oncoprotein (2012) PLoS One, 7, pp. e47661
  • McIntyre, M.C., Frattini, M.G., Grossman, S.R., Laimins, L.A., Human papillomavirus type 18 E7 protein requires intact Cys-X-X-Cys motifs for zinc binding, dimerization, and transformation but not for Rb binding (1993) J. Virol., 67, pp. 3142-3150
  • Alonso, L.G., Garcia-Alai, M.M., Smal, C., Centeno, J.M., Iacono, R., Castano, E., Gualfetti, P., De Prat-Gay, G., The HPV16 E7 viral oncoprotein self-assembles into defined spherical oligomers (2004) Biochemistry, 43, pp. 3310-3317
  • Patrick, D.R., Oliff, A., Heimbrook, D.C., Identification of a novel retinoblastoma gene product binding site on human papillomavirus type 16 E7 protein (1994) J. Biol. Chem., 269, pp. 6842-6850
  • Miseta, A., Csutora, P., Relationship between the occurrence of cysteine in proteins and the complexity of organisms (2000) Mol. Biol. Evol., 17, pp. 1232-1239
  • Human papillomavirus (1995) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 64, pp. 1-409. , World Health Organization International Agency for Research on Cancer, World Health Organization, Geneva
  • Marino, S.M., Gladyshev, V.N., Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces (2010) J. Mol. Biol., 404, pp. 902-916
  • Ferrer-Sueta, G., Manta, B., Botti, H., Radi, R., Trujillo, M., Denicola, A., Factors affecting protein thiol reactivity and specificity in peroxide reduction (2011) Chem. Res. Toxicol., 24, pp. 434-450
  • Pace, N.J., Weerapana, E., Diverse functional roles of reactive cysteines (2013) ACS Chem. Biol., 8, pp. 283-296
  • Thamsen, M., Jakob, U., The redoxome: Proteomic analysis of cellular redox networks (2011) Curr. Opin. Chem. Biol., 15, pp. 113-119
  • Reddie, K.G., Carroll, K.S., Expanding the functional diversity of proteins through cysteine oxidation (2008) Curr. Opin. Chem. Biol., 12, pp. 746-754
  • Pimentel, D., Haeussler, D.J., Matsui, R., Burgoyne, J.R., Cohen, R.A., Bachschmid, M.M., Regulation of cell physiology and pathology by protein S-glutathionylation: Lessons learned from the cardiovascular system (2012) Antioxid. Redox Signal., 16, pp. 524-542
  • Anathy, V., Roberson, E.C., Guala, A.S., Godburn, K.E., Budd, R.C., Janssen-Heininger, Y.M., Redox-based regulation of apoptosis: S-glutathionylation as a regulatory mechanism to control cell death (2012) Antioxid. Redox Signal., 16, pp. 496-505
  • Tanner, J.J., Parsons, Z.D., Cummings, A.H., Zhou, H., Gates, K.S., Redox regulation of protein tyrosine phosphatases: Structural and chemical aspects (2011) Antioxid. Redox Signal., 15, pp. 77-97
  • Neumann, C.A., Cao, J., Manevich, Y., Peroxiredoxin 1 and its role in cell signaling (2009) Cell Cycle, 8, pp. 4072-4078
  • Bulaj, G., Kortemme, T., Goldenberg, D.P., Ionization-reactivity relationships for cysteine thiols in polypeptides (1998) Biochemistry, 37, pp. 8965-8972
  • Gilbert, H.F., Thiol/disulfide exchange equilibria and disulfide bond stability (1995) Methods Enzymol., 251, pp. 8-28
  • Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage (1970) Nature, 227, pp. 680-685
  • Hunt, J.B., Neece, S.H., Ginsburg, A., The use of 4-(2-pyridylazo)resorcinol in studies of zinc release from Escherichia coli aspartate transcarbamoylase (1985) Anal. Biochem., 146, pp. 150-157
  • Ellman, G., Lysko, H., A precise method for the determination of whole blood and plasma sulfhydryl groups (1979) Anal. Biochem., 93, pp. 98-102
  • Chemes, L.B., Sanchez, I.E., Smal, C., De Prat-Gay, G., Targeting mechanism of the retinoblastoma tumor suppressor by a prototypical viral oncoprotein. Structural modularity, intrinsic disorder and phosphorylation of human papillomavirus E7 (2010) FEBS J., 277, pp. 973-988
  • Edgar, R.C., MUSCLE: Multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res., 32, pp. 1792-1797
  • Sali, A., Blundell, T.L., Comparative protein modelling by satisfaction of spatial restraints (1993) J. Mol. Biol., 234, pp. 779-815
  • Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M.Y., Pieper, U., Sali, A., (2006) Current Protocols in Bioinformatics, , Comparative protein structure modeling using Modeller, in (Baxevanis, D. et al. Eds.) Chapter 5, Unit 5.6, Wiley, New York
  • Kabsch, W., Sander, C., Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features (1983) Biopolymers, 22, pp. 2577-2637
  • Morgan, B., Ezerina, D., Amoako, T.N., Riemer, J., Seedorf, M., Dick, T.P., Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis (2013) Nat. Chem. Biol., 9, pp. 119-125
  • Veal, E.A., Day, A.M., Morgan, B.A., Hydrogen peroxide sensing and signaling (2007) Mol. Cell, 26, pp. 1-14
  • Stadtman, E.R., Berlett, B.S., Reactive oxygen-mediated protein oxidation in aging and disease (1998) Drug Metab. Rev., 30, pp. 225-243
  • Chemes, L.B., Sanchez, I.E., De Prat-Gay, G., Kinetic recognition of the retinoblastoma tumor suppressor by a specific protein target (2011) J. Mol. Biol., 412, pp. 267-284
  • Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V., Mann, M., In-gel digestion for mass spectrometric characterization of proteins and proteomes (2006) Nat. Protoc., 1, pp. 2856-2860
  • Phelps, W.C., Munger, K., Yee, C.L., Barnes, J.A., Howley, P.M., Structure-function analysis of the human papillomavirus type 16 E7 oncoprotein (1992) J. Virol., 66, pp. 2418-2427
  • Todorovic, B., Massimi, P., Hung, K., Shaw, G.S., Banks, L., Mymryk, J.S., Systematic analysis of the amino acid residues of human papillomavirus type 16 E7 conserved region 3 involved in dimerization and transformation (2011) J. Virol., 85, pp. 10048-10057
  • Dong, W.L., Caldeira, S., Sehr, P., Pawlita, M., Tommasino, M., Determination of the binding affinity of different human papillomavirus E7 proteins for the tumour suppressor pRb by a plate-binding assay (2001) J. Virol. Methods, 98, pp. 91-98
  • Ruden, D.M., Garfinkel, M.D., Sollars, V.E., Lu, X., Waddingtons widget: Hsp90 and the inheritance of acquired characters (2003) Sem. Cell Dev. Biol., 14, pp. 301-310
  • Jakob, U., Eser, M., Bardwell, J.C., Redox switch of hsp33 has a novel zinc-binding motif (2000) J. Biol. Chem., 275, pp. 38302-38310
  • Jakob, U., Muse, W., Eser, M., Bardwell, J.C., Chaperone activity with a redox switch (1999) Cell, 96, pp. 341-352
  • Bourles, E., Isaac, M., Lebrun, C., Latour, J.M., Seneque, O., Oxidation of Zn(Cys)4 zinc finger peptides by O2 and H2O2: Products, mechanism and kinetics (2011) Chemistry, 17, pp. 13762-13772
  • Christman, M.F., Storz, G., Ames, B.N., OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins (1989) Proc. Natl. Acad. Sci. U.S.A., 86, pp. 3484-3488
  • Choi, H., Kim, S., Mukhopadhyay, P., Cho, S., Woo, J., Storz, G., Ryu, S.E., Structural basis of the redox switch in the OxyR transcription factor (2001) Cell, 105, pp. 103-113
  • Littler, D.R., Harrop, S.J., Fairlie, W.D., Brown, L.J., Pankhurst, G.J., Pankhurst, S., Demaere, M.Z., Curmi, P.M., The intracellular chloride ion channel protein CLIC1 undergoes a redox-controlled structural transition (2004) J. Biol. Chem., 279, pp. 9298-9305
  • Marino, S.M., Gladyshev, V.N., Analysis and functional prediction of reactive cysteine residues (2012) J. Biol. Chem., 287, pp. 4419-4425
  • Choi, J., Choi, S., Choi, J., Cha, M.K., Kim, I.H., Shin, W., Crystal structure of Escherichia coli thiol peroxidase in the oxidized state: Insights into intramolecular disulfide formation and substrate binding in atypical 2-Cys peroxiredoxins (2003) J. Biol. Chem., 278, pp. 49478-49486
  • Hall, A., Nelson, K., Poole, L.B., Karplus, P.A., Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins (2011) Antioxid. Redox Signal., 15, pp. 795-815
  • Fomenko, D.E., Gladyshev, V.N., Identity and functions of CxxC-derived motifs (2003) Biochemistry, 42, p. 11214

Citas:

---------- APA ----------
Chemes, L.B., Camporeale, G., Sánchez, I.E., De Prat-Gay, G. & Alonso, L.G. (2014) . Cysteine-rich positions outside the structural zinc motif of human papillomavirus E7 provide conformational modulation and suggest functional redox roles. Biochemistry, 53(10), 1680-1696.
http://dx.doi.org/10.1021/bi401562e
---------- CHICAGO ----------
Chemes, L.B., Camporeale, G., Sánchez, I.E., De Prat-Gay, G., Alonso, L.G. "Cysteine-rich positions outside the structural zinc motif of human papillomavirus E7 provide conformational modulation and suggest functional redox roles" . Biochemistry 53, no. 10 (2014) : 1680-1696.
http://dx.doi.org/10.1021/bi401562e
---------- MLA ----------
Chemes, L.B., Camporeale, G., Sánchez, I.E., De Prat-Gay, G., Alonso, L.G. "Cysteine-rich positions outside the structural zinc motif of human papillomavirus E7 provide conformational modulation and suggest functional redox roles" . Biochemistry, vol. 53, no. 10, 2014, pp. 1680-1696.
http://dx.doi.org/10.1021/bi401562e
---------- VANCOUVER ----------
Chemes, L.B., Camporeale, G., Sánchez, I.E., De Prat-Gay, G., Alonso, L.G. Cysteine-rich positions outside the structural zinc motif of human papillomavirus E7 provide conformational modulation and suggest functional redox roles. Biochemistry. 2014;53(10):1680-1696.
http://dx.doi.org/10.1021/bi401562e