Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A reconstituted UTase/UR-PII-NRII-NRI bicyclic cascade regulated PII uridylylation and NRI phosphorylation in response to glutamine. We examined the sensitivity and robustness of the responses of the individual cycles and of the bicyclic system. The sensitivity of the glutamine response of the upstream UTase/UR-PII monocycle depended upon the PII concentration, and we show that PII exerted substrate inhibition of the UTase activity of UTase/UR, potentially contributing to this dependence of sensitivity on PII. In the downstream NRII-NRI monocycle, PII controlled NRI phosphorylation state, and the response to PII was hyperbolic at both saturating and unsaturating NRI concentration. As expected from theory, the level of NRI∼P produced by the NRII-NRI monocycle was robust to changes in the NRII or NRI concentrations when NRI was in excess over NRII, as long as the NRII concentration was above a threshold value, an example of absolute concentration robustness (ACR). Because of the parameters of the system, at physiological protein levels and ratios of NRI to NRII, the level of NRI∼P depended upon both protein concentrations. In bicyclic UTase/UR-PII-NRII-NRI systems, the NRI phosphorylation state response to glutamine was always hyperbolic, regardless of the PII concentration or sensitivity of the upstream UTase/UR-PII cycle. In these bicyclic systems, NRI phosphorylation state was only robust to variation in the PII/NRII ratio within a narrow range; when PII was in excess NRI∼P was low, and when NRII was in excess NRI phosphorylation was elevated, throughout the physiological range of glutamine concentrations. Our results show that the bicyclic system produced a graded response of NRI phosphorylation to glutamine under a range of conditions, and that under most conditions the response of NRI phosphorylation state to glutamine levels depended on the concentrations of NRI, NRII, and PII. © 2012 American Chemical Society.

Registro:

Documento: Artículo
Título:Characterization of the reconstituted UTase/UR-PII-NRII-NRI bicyclic signal transduction system that controls the transcription of nitrogen-regulated (Ntr) genes in Escherichia coli
Autor:Jiang, P.; Ventura, A.C.; Ninfa, A.J.
Filiación:Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606, United States
Instituto de Fisiología, Biología Molecular y Neurociencias (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2 - 2 piso, (C1428EHA) Buenos Aires, Argentina
Palabras clave:Bicyclic systems; Glutamine levels; Physiological range; Protein concentrations; Protein level; Signal transduction system; State response; Substrate inhibition; Amino acids; Escherichia coli; Phosphorylation; Physiology; Proteins; Signal transduction; Transcription; Physiological models; bacterial enzyme; glutamine; nitrogen; unclassified drug; UTase; absolute concentration robustness; article; bacterial gene; concentration (parameters); enzyme activity; Escherichia coli; genetic transcription; nonhuman; priority journal; protein modification; protein phosphorylation; signal processing; signal transduction; transcription regulation; uridylation; Bacterial Proteins; Escherichia coli; Escherichia coli Proteins; Glutamine; Multienzyme Complexes; Nitrogen; Nucleotidyltransferases; Phosphoprotein Phosphatases; PII Nitrogen Regulatory Proteins; Protein Kinases; Protein Multimerization; RNA Polymerase Sigma 54; Signal Transduction; Transcription Factors; Escherichia coli
Año:2012
Volumen:51
Número:45
Página de inicio:9045
Página de fin:9057
DOI: http://dx.doi.org/10.1021/bi300575j
Título revista:Biochemistry
Título revista abreviado:Biochemistry
ISSN:00062960
CODEN:BICHA
CAS:glutamine, 56-85-9, 6899-04-3; nitrogen, 7727-37-9; Bacterial Proteins; Escherichia coli Proteins; Glutamine, 56-85-9; Multienzyme Complexes; Nitrogen, 7727-37-9; NtrB protein, E coli; Nucleotidyltransferases, 2.7.7.-; PII Nitrogen Regulatory Proteins; PIID regulatory protein, Bacteria, 57657-57-5; Phosphoprotein Phosphatases, 3.1.3.16; Protein Kinases, 2.7.-; RNA Polymerase Sigma 54, 2.7.7.6; Transcription Factors; glnG protein, E coli; regulatory protein uridylyltransferase, 2.7.7.59; rpoN protein, E coli
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00062960_v51_n45_p9045_Jiang

Referencias:

  • Ninfa, A.J., Jiang, P., Atkinson, M.R., Peliska, J.A., Integration of antagonistic signals in the regulation of nitrogen assimilation in Escherichia coli (2000) Curr. Top. Cell. Regul., 36, pp. 31-75
  • Ninfa, A.J., Reitzer, L.J., Magasanik, B., Initiation of transcription at the bacterial glnAp2 promoter by purified E. coli components is facilitated by enhancers (1987) Cell, 50, pp. 1039-1046
  • Su, W., Porter, S., Kustu, S., Echols, H., DNA looping and enhancer activity: Association between DNA-bound NtrC activator and RNA polymerase at the bacterial glnAp2 promoter (1990) Proc. Natl. Acad. Sci. U. S. A., 87, pp. 5504-5508
  • Hoover, T.R., Santero, E., Porter, S., Kustu, S., The integration host factor stimulates interaction of RNA polymerase with NIFA, the transcriptional activator for nitrogen fixation operons (1990) Cell, 63, pp. 11-22
  • Ueno-Nishio, S., Mango, S., Reitzer, L.J., Magasanik, B., Identification and regulation of the glnL operator-promoter of the complex glnALG operon of Escherichia coli (1984) J. Bacteriol., 160, pp. 379-384
  • Atkinson, M.R., Pattaramanon, N., Ninfa, A.J., Governor of the glnAp2 promoter of Escherichia coli (2002) Mol. Microbiol., 46, pp. 1247-1257
  • Ninfa, A.J., Magasanik, B., Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli (1986) Proc. Natl. Acad. Sci. U. S. A., 83, pp. 5909-5913
  • Zimmer, D.P., Soupene, E., Lee, H.L., Wendisch, V.F., Khodursky, A.B., Peter, B.J., Bender, R.A., Kustu, S., Nitrogen regulatory protein C-controlled genes of Escherichia coli: Scavenging as a defense against niotrogen limitation (2000) Proc. Natl. Acad. Sci. U. S. A., 97, pp. 14674-14679
  • Porter, S.C., North, A.K., Wedel, A.B., Kustu, S., Oligomerization of NTRC at the glnA enhancer is required for transcriptional activation (1993) Genes Dev., 7, pp. 2258-2273
  • Popham, D.L., Szeto, D., Keener, J., Kustu, S., Function of a bacterial activator protein that binds to transcriptional enhancers (1989) Science, 243, pp. 629-635
  • Weiss, V., Magasanik, B., Phosphorylation of nitrogen regulator i of Escherichia coli (1988) Proc. Natl. Acad. Sci. U. S. A., 85, pp. 8919-8923
  • Backman, K., Chen, Y.M., Magasanik, B., Physical and genetic characterization of the glnA - GlnG region of the Escherichia coli chromosome (1981) Proc. Natl. Acad. Sci. U. S. A., 78, pp. 3743-3747
  • Reitzer, L., Nitrogen assimilation and global regulation in Escherichia coli (2003) Annu. Rev. Microbiol., 57, pp. 155-176
  • Atkinson, M.R., Blauwkamp, T.A., Bondarenko, V., Studitsky, V., Ninfa, A.J., Activation of the glnA, glnK, and nac promoters as Escherichia coli undergoes the transition from nitrogen excess growth to nitrogen starvation (2002) J. Bacteriol., 184, pp. 5358-5363
  • Atkinson, M.R., Blauwkamp, T.A., Ninfa, A.J., Context-dependent functions of the PII and GlnK signal transduction protein in Escherichia coli (2002) J. Bacteriol., 184, pp. 5364-5375
  • Keener, J., Kustu, S., Protein kinase and phosphoprotein phosphatase activities of nitrogen regulatory proteins NTRB and NTRC of enteric bacteria: Roles of the conserved amino-terminal domain of NTRC (1988) Proc. Natl. Acad. Sci. U. S. A., 85, pp. 4976-4980
  • Jiang, P., Atkinson, M.R., Srisawat, C., Sun, Q., Ninfa, A.J., Functional dissection of the dimerization and enzymatic activities of Escherichia coli nitrogen regulator II and their regulation by the PII protein (2000) Biochemistry, 39, pp. 13433-13449
  • Jiang, P., Ninfa, A.J., Regulation of he autophosphorylation of Escherichia coli nitrogen regulator II by the PII signal transduction protein (1999) J. Bacteriol., 181, pp. 1906-1911
  • Pioszak, A.A., Ninfa, A.J., Mechanism of the PII-activated phosphatase activity of Escherichia coli NRII (NtrB): How the different domains of NRII collaborate to act as a phoshatase (2003) Biochemistry, 42, pp. 8885-8899
  • Pioszak, A.A., Ninfa, A.J., Mutations altering the N-terminal receiver domain of NRI (NtrC) that prevent dephosphorylation by the NRII-PII complex in Escherichia coli (2004) J. Bacteriol., 186, pp. 5730-5740
  • Zhao, R., Collins, E.J., Bourret, R.B., Silversmith, R.E., Structure and catalytic mechanism of the E. coli chemotaxis phosphatase CheZ (2002) Nat. Struct. Biol., 9, pp. 570-575
  • Ninfa, A.J., Jiang, P., PII signal transduction proteins: Sensors of alpha-ketoglutarate that regulate nitrogen metabolism (2005) Curr. Opin Microbiol., 8, pp. 168-173
  • Atkinson, M.R., Kamberov, E.S., Weiss, R.L., Ninfa, A.J., Reversible uridylylation of the Escherichia coli PII signal transduction protein regulates its ability to stimulate the dephosphorylation of the transcription factor nitrogen regulator i (NRI or NtrC) (1994) J. Biol. Chem., 269, pp. 28288-28293
  • Jiang, P., Ninfa, A.J., A source of ultrasensitivity in the glutamine response of the bicyclic cascade system controlling glutamine synthetase adenylylation state and activity in Escherichia coli (2011) Biochemistry, 50, pp. 10929-10940
  • Ventura, A.C., Jiang, P., Van Wassenhove, L., Del Vecchio, D., Merajver, S.D., Ninfa, A.J., Signaling properties of a covalent modification cycle are altered by a downstream target (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 10032-10037
  • Ikeda, T.P., Shauger, A.E., Kustu, S., Salmonella typhimurium apparently perceives external nitrogen limitation as internal glutamine limitation (1996) J. Mol. Biol., 259, pp. 589-607
  • Bennett, B.D., Kimball, E.H., Gao, M., Osterhout, R., Van Dien, S.J., Rabinowitz, J.D., Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli (2009) Nat. Chem Biol., 5, pp. 593-599
  • Jiang, P., Peliska, J.A., Ninfa, A.J., Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of Escherichia coli and its interaction with the PII proteins (1998) Biochemistry, 37, pp. 12782-12794
  • Zhang, Y., Pohlmann, E.L., Serate, J., Conrad, M.C., Roberts, G.P., Mutagenesis and functional characterization of the four domains of GlnD, a bifunctional nitrogen sensor protein (2010) J. Bacteriol., 192, pp. 2711-2721
  • Kamberov, E.S., Atkinson, M.R., Ninfa, A.J., The Escherichia coli PII signal transduction protein is activated upon binding 2-ketoglutarate and ATP (1995) J. Biol. Chem., 270, pp. 17797-17807
  • Jiang, P., Ninfa, A.J., Escherichia coli PII signal transduction protein controlling nitrogen assimilation acts as a sensor of adenylylate energy charge in vitro (2007) Biochemistry, 46, pp. 12979-12996
  • Forchhammer, K., Global carbon/nitrogen control by PII signal transduction in cyanobacteria: From signals to targets (2004) FEMS Microbiol. Rev., 28, pp. 319-333
  • Senior, P.J., Regulation of nitrogen metabolism in Escherichia coli and Klebsiella aerogenes: Studies with the continuous culture technique (1975) J. Bacteriol., 123, pp. 407-418
  • Taketa, K., Pogell, B.M., Allosteric inhibition of rat liver fructose 1, 6-diphosphatase by Adenosine 5′-Monophosphate (1965) J. Biol. Chem., 240, pp. 651-662
  • Goldbeter, A., Koshland, D.E., An amplified sensitivity arising from covalent modification in biological systems (1981) Proc. Natl. Acad. Sci. U. S. A., 78, pp. 6840-6844
  • Pomerening, J.R., Sontag, E.D., Ferrell Jr., J.E., Building a cell cycle oscillator: Hysteresis and bistability in the activation of cdc2 (2003) Nat. Cell Biol., 5, pp. 346-351
  • Angeli, D., Ferrell J.E., Jr., Sontag, E.D., Detection of multistability, bifurcations, and hysteresis in a large class of biological feedback systems (2004) Proc. Natl. Acad. Sci. U. S. A., 101, pp. 1822-1827
  • Melen, G.J., Levy, S., Barkai, N., Shilo, B.Z., Threshold responses to morphogen gradients by zero-order ultrasensitivity (2005) Mol. Syst. Biol., 1. , 2005.0028
  • Ferrell J.E., Jr., Tripping the switch fantastic: How a protein kinase cascade can convert graded inputs into switch-like outputs (1996) Trends Biochem. Sci., 21, pp. 460-466
  • Savageau, M.A., Parameter sensitivity as a criterion for evaluating and comparing the performance of biochemical systems (1971) Nature, 229, pp. 542-544
  • Kitano, H., Towards a theory of biological robustness (2007) Mol. Syst. Biol., 3, p. 137
  • Alon, U., Surette, M.G., Barkai, N., Leibler, S., Robustness in bacterial chemotaxis (1999) Nature, 397, pp. 168-171
  • Shinar, G., Milo, R., Martinez, M.R.T., Alon, U., Input-output robustness in simple bacterial signaling systems (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 19931-19935
  • Batchelor, E., Goulian, M., Robustness and the cycle of phosphorylation and dephosphorylation in a two-component regulatory system (2003) Proc. Natl. Acad. Sci. U. S. A., 100, pp. 691-696
  • Siryaporn, A., Perchuk, B.S., Goulian, M., Evolving a robust signal transduction pathway from weak cross talk (2010) Mol. Syst. Biol., 6, p. 452
  • Bornholdt, S., Sneppen, K., Robustness as an evolutionary principle (2000) Proc. R. Soc. London B, 267, pp. 2281-2286
  • Soyer, O.S., Pfeiffer, T., Evolution under fluctuating environments explains observed robustness in metabolic netwoorks (2010) PLoS Comp. Biol., 6, p. 10000907
  • Van Heeswijk, W.C., Hoving, S., Molenaar, D., Stegeman, B., Kahn, D., Westerhoff, H.V., An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli (1996) Mol. Microbiol., 21, pp. 133-146
  • Atkinson, M.R., Ninfa, A.J., Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli (1998) Mol. Microbiol., 29, pp. 431-447
  • Goldbeter, A., Koshland, D.E., Sensitivity amplification in biochemical systems (1982) Q. Rev. Biophys., 15, pp. 555-591
  • Koshland Jr., K.D., Goldbeter, A., Stock, J.B., Amplification and adaptation in regulatory and sensory systems (1982) Science, 217, pp. 220-225
  • Goldbeter, A., Koshland, D.E., Ultrasensitivity in biochemical systems controlled by covalent modification. Interplay between zero order and multistep effects (1984) J. Biol. Chem., 259, pp. 14441-14447
  • Cardenas, M.L., Cornish-Bowden, A., Characteristics necessary for an interconvertible enzyme cascade to generate a highly sensitive response to an effector (1989) Biochem. J., 257, pp. 339-345
  • Ortega, F., Acerenza, L., Westerhoff, H.V., Mas, F., Cascante, M., Product dependence and bifunctionality compromise the ultraasensitivity of signal transduction cascades (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 1170-1175
  • Mutalik, V.K., Shah, P., Vankatesh, K.V., Allosteric interactions and bifunctionality make the response of glutamine synthetase cascade system of Escherichia coli robust and ultrasensitive (2003) J. Biol. Chem., 278, pp. 26327-26332
  • Guidi, G.M., Carlier, M.F., Goldbeter, A., Bistability in the isocitrate dehydrogenase reaction: An experimentally based theoretical study (1998) Biophys. J., 74, pp. 1229-1240
  • Goulian, M., Robust control in bacterial regulatory circuits (2004) Curr. Opin. Microbiol., 7, pp. 198-202
  • Shinar, G., Feinberg, M., Design principles for robust biochemical reaction networks: What works, what cannot work, and what might almost work (2011) Math. Biosci., 231, pp. 39-48
  • Pioszak, A.A., Ninfa, A.J., Genetic and Biochemical analysis of the phosphatase activity of Escherichia coli NRII (NtrB) and its regulation by the PII signal transduction protein (2003) J. Bacteriol., 185, pp. 1299-131552
  • Chock, P.B., Stadtman, E.R., Superiority of interconvertable enzyme cascades in metabolic regulation: Analysis of multicyclic systems (1977) Proc. Natl. Acad. Sci. U. S. A., 74, pp. 2766-2770
  • Gomez-Uribe, C., Verghese, G.C., Mirny, L.A., Operating regimes of signaling cycles: Statics, dynamics, and noise filtering (2007) PLoS Comp. Biol., 3, p. 246
  • Stadtman, E.R., Chock, P.B., Superiority of interconvertable enzyme cascades in metabolic regulation: Analysis of monocyclic systems (1977) Proc. Natl. Acad. Sci. U. S. A., 74, pp. 2761-2765
  • Hart, Y., Madar, D., Yuan, J., Bren, A., Mayo, A.E., Rabinowitz, J.D., Alon, U., Robust control of nitrogen assimilation by a bifunctional enzyme in E. coli (2011) Mol. Cell, 41, pp. 117-127
  • Doucette, C.D., Schwab, D.J., Wingreen, N.S., Rabinowitz, J.D., α-Ketoglutarate coordinates carbon and nitrogen utilization via Enzyme i inhibition (2011) Nat. Chem. Biol., 7, pp. 894-901

Citas:

---------- APA ----------
Jiang, P., Ventura, A.C. & Ninfa, A.J. (2012) . Characterization of the reconstituted UTase/UR-PII-NRII-NRI bicyclic signal transduction system that controls the transcription of nitrogen-regulated (Ntr) genes in Escherichia coli. Biochemistry, 51(45), 9045-9057.
http://dx.doi.org/10.1021/bi300575j
---------- CHICAGO ----------
Jiang, P., Ventura, A.C., Ninfa, A.J. "Characterization of the reconstituted UTase/UR-PII-NRII-NRI bicyclic signal transduction system that controls the transcription of nitrogen-regulated (Ntr) genes in Escherichia coli" . Biochemistry 51, no. 45 (2012) : 9045-9057.
http://dx.doi.org/10.1021/bi300575j
---------- MLA ----------
Jiang, P., Ventura, A.C., Ninfa, A.J. "Characterization of the reconstituted UTase/UR-PII-NRII-NRI bicyclic signal transduction system that controls the transcription of nitrogen-regulated (Ntr) genes in Escherichia coli" . Biochemistry, vol. 51, no. 45, 2012, pp. 9045-9057.
http://dx.doi.org/10.1021/bi300575j
---------- VANCOUVER ----------
Jiang, P., Ventura, A.C., Ninfa, A.J. Characterization of the reconstituted UTase/UR-PII-NRII-NRI bicyclic signal transduction system that controls the transcription of nitrogen-regulated (Ntr) genes in Escherichia coli. Biochemistry. 2012;51(45):9045-9057.
http://dx.doi.org/10.1021/bi300575j