Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The human respiratory syncytial virus M 2-1 transcription antiterminator is an essential elongation factor required by the RNA polymerase for effective transcription beyond the first two nonstructural genes. Its exclusive presence in pneumovirus among all paramyxovirus suggests a unique function within this small genus. With the aim of understanding its biochemical properties, we investigated this α-helical tetramer by making use of a biophysical approach. We found that the tetramer hydrodynamic radius is considerably extended at high ionic strengths and determined its zinc content to be one atom per monomer. Dissociation-unfolding experiments show a fully reversible and concentration-dependent cooperative transition, but secondary and tertiary structural changes are uncoupled at lower protein concentrations. We detect the presence of a monomeric intermediate, which can be classified as a "late molten globule" with substantial secondary and tertiary structure. Global fittings of experiments from three different probes at two M 2-1 concentrations provide a free energy of dissociation-unfolding of -36.8 ± 0.1 kcal mol -1, corresponding to a tight dissociation constant of 10 -28 M 3 at pH 7.0. The tetramer affinity is strongly governed by pH, with a free energy change of 13 kcal mol -1 when pH decreases from 7.0 to 5.0 (K D = 10 -18 M 3). The drastic changes that take place within a pH range compatible with a cellular environment strongly suggest a regulatory effect of pH on M 2-1 structure and biochemical properties, likely affecting transcription and interaction with proteins and RNA. © 2011 American Chemical Society.

Registro:

Documento: Artículo
Título:The respiratory syncytial virus transcription antiterminator M 2-1 is a highly stable, zinc binding tetramer with strong pH-dependent dissociation and a monomeric unfolding intermediate
Autor:Esperante, S.A.; Chemes, L.B.; Sánchez, I.E.; De Prat-Gay, G.
Filiación:Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBA-Conicet, Patricias Argentinas 435, 1405 Buenos Aires, Argentina
Protein Physiology Laboratory, Departamento de Quimì Ica Bioloìgica, Univ. de Buenos Aires and Consejo Nac. de Investigaciones Cientifi Icas y Teci Nicas de Argentina, C1428EGA Buenos Aires, Argentina
Palabras clave:Biochemical properties; Cellular environment; Concentration-dependent; Cooperative transitions; Dissociation constant; Elongation factor; Free energy change; Global fitting; High ionic strength; Hydrodynamic Radius; Molten globule; Monomeric intermediate; pH range; PH-dependent; Protein concentrations; Regulatory effects; Respiratory syncytial virus; RNA polymerase; Secondary and tertiary structures; Structural change; Tetramers; Zinc binding; Zinc content; Dissociation; Experiments; Free energy; Genes; Ionic strength; Oligomers; pH effects; RNA; Viruses; Zinc; Transcription; monomer; protein M2; protein M2-1; RNA; RNA polymerase; tetramer; unclassified drug; virus protein; zinc; alpha helix; article; atom; biochemistry; circular dichroism; fluorescence spectroscopy; hydrodynamics; ionic strength; light scattering; nonhuman; pH; Pneumovirinae; priority journal; protein determination; protein tertiary structure; protein unfolding; regulator gene; Respiratory syncytial pneumovirus; Humans; Hydrogen-Ion Concentration; Kinetics; Peptide Elongation Factors; Protein Binding; Protein Folding; Protein Multimerization; Protein Stability; Protein Unfolding; Respiratory Syncytial Virus Infections; Respiratory Syncytial Virus, Human; Viral Proteins; Zinc; Human respiratory syncytial virus; Paramyxoviridae; Pneumovirus; Respiratory syncytial virus
Año:2011
Volumen:50
Número:40
Página de inicio:8529
Página de fin:8539
DOI: http://dx.doi.org/10.1021/bi200661k
Título revista:Biochemistry
Título revista abreviado:Biochemistry
ISSN:00062960
CODEN:BICHA
CAS:RNA, 63231-63-0; RNA polymerase, 9014-24-8; zinc, 14378-32-6, 7440-66-6; Peptide Elongation Factors; Viral Proteins; Zinc, 7440-66-6
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00062960_v50_n40_p8529_Esperante

Referencias:

  • Collins, P.L., Crowe, J.E., (2007) Respiratory Syncytial Virus and Metapneumovirus, , Lippincott Williams & Wilkins, Philadelphia
  • Collins, P.L., Hill, M.G., Camargo, E., Grosfeld, H., Chanock, R.M., Murphy, B.R., Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5′ proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development (1995) Proc. Natl. Acad. Sci. U.S.A., 92, pp. 11563-11567
  • Buchholz, U.J., Biacchesi, S., Pham, Q.N., Tran, K.C., Yang, L., Luongo, C.L., Skiadopoulos, M.H., Collins, P.L., Deletion of M2 gene open reading frames 1 and 2 of human metapneumovirus: Effects on RNA synthesis, attenuation, and immunogenicity (2005) Journal of Virology, 79 (11), pp. 6588-6597. , DOI 10.1128/JVI.79.11.6588-6597.2005
  • Grosfeld, H., Hill, M.G., Collins, P.L., RNA replication by respiratory syncytial virus (RSV) is directed by the N, P, and L proteins; Transcription also occurs under these conditions but requires RSV superinfection for efficient synthesis of full-length mRNA (1995) J. Virol., 69, pp. 5677-5686
  • Garcia, J., Garcia-Barreno, B., Vivo, A., Melero, J.A., Cytoplasmic inclusions of respiratory syncytial virus-infected cells: Formation of inclusion bodies in transfected cells that coexpress the nucleoprotein, the phosphoprotein, and the 22K protein (1993) Virology, 195, pp. 243-247
  • Cartee, T.L., Wertz, G.W., Respiratory Syncytial virus M2-1 protein requires phosphorylation for efficient function and binds viral RNA during infection (2001) Journal of Virology, 75 (24), pp. 12188-12197. , DOI 10.1128/JVI.75.24.12188-12197.2001
  • Mason, S.W., Aberg, E., Lawetz, C., DeLong, R., Whitehead, P., Liuzzi, M., Interaction between human respiratory syncytial virus (RSV) M2-1 and P proteins is required for reconstitution of M2-1-dependent RSV minigenome activity (2003) Journal of Virology, 77 (19), pp. 10670-10676. , DOI 10.1128/JVI.77.19.10670-10676.2003
  • Collins, P.L., Hill, M.G., Cristina, J., Grosfeld, H., Transcription elongation factor of respiratory syncytial virus, a nonsegmented negative-strand RNA virus (1996) Proceedings of the National Academy of Sciences of the United States of America, 93 (1), pp. 81-85. , DOI 10.1073/pnas.93.1.81
  • Fearns, R., Collins, P.L., Role of the M2-1 transcription antitermination protein of respiratory syncytial virus in sequential transcription (1999) Journal of Virology, 73 (7), pp. 5852-5864
  • Hardy, R.W., Harmon, S.B., Wertz, G.W., Diverse gene junctions of respiratory syncytial virus modulate the efficiency of transcription termination and respond differently to M2- mediated antitermination (1999) Journal of Virology, 73 (1), pp. 170-176
  • Hardy, R.W., Wertz, G.W., The product of the respiratory syncytial virus M2 gene ORF1 enhances readthrough of intergenic junctions during viral transcription (1998) Journal of Virology, 72 (1), pp. 520-526
  • Li, D., Jans, D.A., Bardin, P.G., Meanger, J., Mills, J., Ghildyal, R., Association of respiratory syncytial virus M protein with viral nucleocapsids is mediated by the M2-1 protein (2008) J. Virol., 82, pp. 8863-8870
  • Modrof, J., Becker, S., Muhlberger, E., Ebola virus transcription activator VP30 is a zinc-binding protein (2003) Journal of Virology, 77 (5), pp. 3334-3338. , DOI 10.1128/JVI.77.5.3334-3338.2003
  • Worthington, M.T., Amann, B.T., Nathans, D., Berg, J.M., Metal binding properties and secondary structure of the zinc-binding domain of Nup475 (1996) Proceedings of the National Academy of Sciences of the United States of America, 93 (24), pp. 13754-13759. , DOI 10.1073/pnas.93.24.13754
  • Hardy, R.W., Wertz, G.W., The Cys 3-His 1 motif of the respiratory syncytial virus M2-1 protein is essential for protein function (2000) Journal of Virology, 74 (13), pp. 5880-5885. , DOI 10.1128/JVI.74.13.5880-5885.2000
  • Tang, R.S., Nguyen, N., Cheng, X., Jin, H., Requirement of cysteines and length of the human respiratory syncytial virus M2-1 protein for protein function and virus viability (2001) Journal of Virology, 75 (23), pp. 11328-11335. , DOI 10.1128/JVI.75.23.11328-11335.2001
  • Cuesta, I., Geng, X., Asenjo, A., Villanueva, N., Structural phosphoprotein M2-1 of the human respiratory syncytial virus is an RNA binding protein (2000) J. Virol., 74, pp. 9858-9867
  • Tran, T.L., Castagne, N., Dubosclard, V., Noinville, S., Koch, E., Moudjou, M., Henry, C., Eleouet, J.F., The respiratory syncytial virus M2-1 protein forms tetramers and interacts with RNA and P in a competitive manner (2009) J. Virol., 83, pp. 6363-6374
  • Miroux, B., Walker, J.E., Over-production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels (1996) Journal of Molecular Biology, 260 (3), pp. 289-298. , DOI 10.1006/jmbi.1996.0399
  • Clackson, T., Detlef, G., Jones, P.W., (1991) PCR, A Practical Approach, , IRL Press, Oxford, U.K
  • Mateu, M.G., Fersht, A.R., Nine hydrophobic side chains are key determinants of the thermodynamic stability and oligomerization status of tumour suppressor p53 tetramerization domain (1998) EMBO J., 17, pp. 2748-2758
  • Uversky, V.N., Natively unfolded proteins: A point where biology waits for physics (2002) Protein Science, 11 (4), pp. 739-756. , DOI 10.1110/ps.4210102
  • Hunt, J.B., Neece, S.H., Ginsburg, A., The use of 4-(2-pyridylazo)resorcinol in studies of zinc release from Escherichia coli aspartate transcarbamoylase (1985) Anal. Biochem., 146, pp. 150-157
  • Baker, B.M., Murphy, K.P., Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry (1996) Biophysical Journal, 71 (4), pp. 2049-2055
  • Hammarstrom, P., Jiang, X., Deechongkit, S., Kelly, J.W., Anion shielding of electrostatic repulsions in transthyretin modulates stability and amyloidosis: Insight into the chaotrope unfolding dichotomy (2001) Biochemistry, 40 (38), pp. 11453-11459. , DOI 10.1021/bi010673+
  • Barry, J.K., Matthews, K.S., Thermodynamic analysis of unfolding and dissociation in lactose repressor protein (1999) Biochemistry, 38, pp. 6520-6528
  • Sinha, S., Mitra, N., Kumar, G., Bajaj, K., Surolia, A., Unfolding studies on soybean agglutinin and Concanavalin A tetramers: A comparative account (2005) Biophysical Journal, 88 (2), pp. 1300-1310. , DOI 10.1529/biophysj.104.051052
  • Chilukuri, L.N., Bartlett, D.H., Fortes, P.A.G., Comparison of high pressure-induced dissociation of single-stranded DNA-binding protein (SSB) from high pressure-sensitive and high pressure-adapted marine Shewanella species (2002) Extremophiles, 6 (5), pp. 377-383. , DOI 10.1007/s00792-002-0267-6
  • Panse, V.G., Swaminathan, C.P., Aloor, J.J., Surolia, A., Varadarajan, R., Unfolding thermodynamics of the tetrameric chaperone, SecB (2000) Biochemistry, 39 (9), pp. 2362-2369. , DOI 10.1021/bi992484l
  • Xiao, S., Raleigh, D.P., A critical assessment of putative gatekeeper interactions in the villin headpiece helical subdomain (2010) J. Mol. Biol., 401, pp. 274-285
  • Myers, J.K., Pace, C.N., Scholtz, J.M., Denaturant m values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding (1995) Protein Sci., 4, pp. 2138-2148
  • Kolokoltsov, A.A., Deniger, D., Fleming, E.H., Roberts Jr., N.J., Karpilow, J.M., Davey, R.A., Small interfering RNA profiling reveals key role of clathrin-mediated endocytosis and early endosome formation for infection by respiratory syncytial virus (2007) Journal of Virology, 81 (14), pp. 7786-7800. , DOI 10.1128/JVI.02780-06
  • Dawson, J.E., Seckute, J., De, S., Schueler, S.A., Oswald, A.B., Nicholson, L.K., Elucidation of a pH-folding switch in the Pseudomonas syringae effector protein AvrPto (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 8543-8548

Citas:

---------- APA ----------
Esperante, S.A., Chemes, L.B., Sánchez, I.E. & De Prat-Gay, G. (2011) . The respiratory syncytial virus transcription antiterminator M 2-1 is a highly stable, zinc binding tetramer with strong pH-dependent dissociation and a monomeric unfolding intermediate. Biochemistry, 50(40), 8529-8539.
http://dx.doi.org/10.1021/bi200661k
---------- CHICAGO ----------
Esperante, S.A., Chemes, L.B., Sánchez, I.E., De Prat-Gay, G. "The respiratory syncytial virus transcription antiterminator M 2-1 is a highly stable, zinc binding tetramer with strong pH-dependent dissociation and a monomeric unfolding intermediate" . Biochemistry 50, no. 40 (2011) : 8529-8539.
http://dx.doi.org/10.1021/bi200661k
---------- MLA ----------
Esperante, S.A., Chemes, L.B., Sánchez, I.E., De Prat-Gay, G. "The respiratory syncytial virus transcription antiterminator M 2-1 is a highly stable, zinc binding tetramer with strong pH-dependent dissociation and a monomeric unfolding intermediate" . Biochemistry, vol. 50, no. 40, 2011, pp. 8529-8539.
http://dx.doi.org/10.1021/bi200661k
---------- VANCOUVER ----------
Esperante, S.A., Chemes, L.B., Sánchez, I.E., De Prat-Gay, G. The respiratory syncytial virus transcription antiterminator M 2-1 is a highly stable, zinc binding tetramer with strong pH-dependent dissociation and a monomeric unfolding intermediate. Biochemistry. 2011;50(40):8529-8539.
http://dx.doi.org/10.1021/bi200661k