Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Binding cooperativity guides the formation of protein-nucleic acid complexes, in particular those that are highly regulated such as replication origins and transcription sites. Using theDNAbinding domain of the origin binding and transcriptional regulator protein E2 from human papillomavirus type 16 as model, and through isothermal titration calorimetry analysis, we determined a positive, entropy-driven cooperativity upon binding of the protein to its cognate tandem double E2 site. This cooperativity is associated with a change in DNA structure, where the overall B conformation is maintained. Two homologous E2 domains, those of HPV18 and HPV11, showed that the enthalpic-entropic components of the reaction and DNA deformation can diverge. Because the DNA binding helix is almost identical in the three domains, the differences must lie dispersed throughout this unique dimeric β-barrel fold. This is in surprising agreement with previous results for this domain, which revealed a strong coupling between global dynamics and DNA recognition. © 2010 American Chemical Society.

Registro:

Documento: Artículo
Título:Thermodynamics of cooperative DNA recognition at a replication origin and transcription regulatory site
Autor:Dellarole, M.; Sánchez, I.E.; De Prat Gay, G.
Filiación:Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-Conicet, Patricias Argentinas 435 (1405), Buenos Aires, Argentina
Protein Physiology Laboratory, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Cooperativity; DNA binding; DNA recognition; DNA structure; Global dynamics; Human papillomavirus; Isothermal titration calorimetry; Protein-nucleic acids; Replication origin; Strong coupling; Transcriptional regulator; Binding sites; Nucleic acids; Proteins; Thermodynamics; Transcription; DNA; DNA; glycoprotein E2; article; beta sheet; binding site; DNA replication origin; DNA structure; DNA transcription; enthalpy; entropy; Human papillomavirus type 11; Human papillomavirus type 18; molecular recognition; priority journal; protein DNA binding; protein domain; protein folding; thermodynamics; Base Sequence; Binding Sites; DNA; DNA-Binding Proteins; Human papillomavirus 16; Kinetics; Models, Molecular; Nucleic Acid Conformation; Oncogene Proteins, Viral; Protein Binding; Protein Structure, Tertiary; Regulatory Elements, Transcriptional; Replication Origin; Thermodynamics; Transcription, Genetic; Human papillomavirus type 16
Año:2010
Volumen:49
Número:48
Página de inicio:10277
Página de fin:10286
DOI: http://dx.doi.org/10.1021/bi1014908
Título revista:Biochemistry
Título revista abreviado:Biochemistry
ISSN:00062960
CODEN:BICHA
CAS:DNA, 9007-49-2; DNA, 9007-49-2; DNA-Binding Proteins; E2 protein, Human papillomavirus type 16; Oncogene Proteins, Viral
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00062960_v49_n48_p10277_Dellarole

Referencias:

  • Prado, F., Aguilera, A., Impairment of replication forkprogression mediatesRNApol II transcription-associated recombination (2005) EMBO J., 24, pp. 1267-1276
  • Liu, B., Alberts, B.M., Head-on collision between a DNAreplication apparatus and RNA polymerase transcription complex (1995) Science, 267, pp. 1131-1137
  • Flint, S.J., Enquist, L.W., Racaniello, V.R., Skalka, A.M., Transcription strategies: DNA templates (2008) Principles of Virology, 3rd Ed., pp. 240-287. , ASM Press, Washington, DC
  • Flint, S.J., Enquist, L.W., Racaniello, V.R., Skalka, A.M., Genome replication strategies: DNA viruses (2008) Principles of Virology, 3rd Ed., pp. 288-333. , ASM Press, Washington, DC
  • Kelly, T.J., SV40 DNA replication (1988) J. Biol. Chem., 263, pp. 17889-17892
  • Komatsu, T., Ballestas, M.E., Barbera, A.J., Kelley-Clarke, B., Kaye, K.M., KSHV LANA1 binds DNA as an oligomer and residuesN-terminal to the oligomerization domain are essential for DNAbinding, replication, and episome persistence (2004) Virology, 319, pp. 225-236
  • Polvino-Bodnar, M., Schaffer, P.A., DNAbinding activityis required for EBNA 1-dependent transcriptional activation and DNA replication (1992) Virology, 187, pp. 591-603
  • Chiang, C.M., Ustav, M., Stenlund, A., Ho, T.F., Broker, T.R., Chow, L.T., Viral E1 and E2 proteins support replication ofhomologous and heterologous papillomaviral origins (1992) Proc. Natl.Acad. Sci. U.S.A., 89, pp. 5799-5803
  • Cox, M., Ryder, K., Silver, S., Tegtmeyer, P., The role ofoperator position in SV40 T-antigen-mediated repression (1988) Virology, 167, pp. 293-295
  • Lim, C., Sohn, H., Gwack, Y., Choe, J., Latency-associatednuclear antigen of Kaposi's sarcoma-associated herpesvirus (humanherpesvirus-8) binds ATF4/CREB2 and inhibits its transcriptionalactivation activity (2000) J. Gen. Virol., 81, pp. 2645-2652
  • Thierry, F., Transcriptional regulation of the papillomavirusoncogenes by cellular and viral transcription factors in cervicalcarcinoma (2009) Virology, 384, pp. 375-379
  • Rawlins, D.R., Milman, G., Hayward, S.D., Hayward, G.S., Sequence-specific DNA binding of the Epstein-Barr virusnuclear antigen (EBNA-1) to clustered sites in the plasmid maintenanceregion (1985) Cell, 42, pp. 859-868
  • Abbate, E.A., Voitenleitner, C., Botchan, M.R., Structureof the papillomavirus DNA-tethering complex E2 :Brd4 and a peptidethat ablates HPV chromosomal association (2006) Mol. Cell, 24, pp. 877-889
  • Feeney, K.M., Parish, J.L., Targeting mitotic chromosomes:A conserved mechanism to ensure viral genome persistence (2009) Proc. Biol. Sci., 276, pp. 1535-1544
  • Titolo, S., Brault, K., Majewski, J., White, P.W., Archambault, J., Characterization of the minimal DNA binding domain of thehuman papillomavirus e1 helicase: Fluorescence anisotropy studiesand characterization of a dimerization-defective mutant protein (2003) J. Virol., 77, pp. 5178-5191
  • Titolo, S., Welchner, E., White, P.W., Archambault, J., Characterization of the DNA-binding properties of the origin-bindingdomain of simian virus 40 large T antigen by fluorescenceanisotropy (2003) J. Virol., 77, pp. 5512-5518
  • Wong, L.Y., Wilson, A.C., Kaposi's sarcoma-associatedherpesvirus latency-associated nuclear antigen induces a strong bendon binding to terminal repeat DNA (2005) J. Virol., 79, pp. 13829-13836
  • Sanchez, I.E., Dellarole, M., Gaston, K., De Prat Gay, G., Comprehensive comparison of the interaction of the E2 masterregulator with its cognate target DNA sites in 73 human papillomavirustypes by sequence statistics (2008) Nucleic Acids Res., 36, pp. 756-769
  • Wyman, J., Gill, S.J., (1990) Binding and Linkage: Functionalchemistry of Biological Macromolecules, , UNSB, Mill Valley, CA
  • Ptashne, M., (2004) A Genetic Switch-Phage Lambda Revisited, 3rded., , Cold Spring Harbor Laboratory Press, Plainview, NY
  • Tan, S., Leong, L.E., Walker, P.A., Bernard, H., Thehuman papillomavirus type 16 E2 transacription factor binds with lowcooperativity to two flanking sites and represses the E6 promoterthrough displacement of Sp1 and TF IID (1994) J. Virol., 68, pp. 6411-6420
  • Garber, A.C., Hu, J., Renne, R., Latency-associatednuclear antigen (LANA) cooperatively binds to two sites within theterminal repeat, and both sites contribute to the ability of LANA tosuppress transcription and to facilitate DNA replication (2002) J. Biol. Chem., 277, pp. 27401-27411
  • Weisshart, K., Taneja, P., Jenne, A., Herbig, U., Simmons, D.T., Fanning, E., Two regions of simian virus 40 Tantigen determinecooperativity of double-hexamer assembly on the viral origin ofDNAreplication and promote hexamer interactions during bidirectionalorigin DNA unwinding (1999) J. Virol., 73, pp. 2201-2211
  • Spalholz, B.A., Byrne, J.C., Howley, P.M., Evidence forcooperativity between E2 binding sites in E2 trans-regulation ofbovine papillomavirus type (1988) J. Virol., 62, pp. 3143-3150
  • Summers, H., Barwell, J.A., Pfuetzner, R.A., Edwards, A.M., Frappier, L., Cooperative assembly of EBNA1 on the Epstein-Barr virus latent origin of replication (1996) J. Virol., 70, pp. 1228-1231
  • Bosch, F.X., Sanjosé, S., Castellsagué, X., Moreno, V., Muñoz, N., Epimediology of human papillomavirus infections and associations with cervical cancer: New opportunities for prevention (2006) Papillomavirus Research: From Natural History to Vaccinesand beyond, pp. 19-40. , (Saveria Campo, M., Ed.), Caisreir AcademicPress, Wymondham, U.K
  • Bernard, H.U., Burk, R.D., Chen, Z., Van Doorslaer, K., Hausen, H.Z., De Villiers, E.M., Classification of papillomaviruses(PVs) based on 189 PV types and proposal of taxonomic amendments (2010) Virology, 401, pp. 70-79
  • Lu, J.Z., Sun, Y.N., Rose, R.C., Bonnez, W., McCance, D.J., Two E2 binding sites ( E2 BS) alone or one E2 BS plus an A/Trichregion are minimal requirements for the replication of the humanpapillomavirus type 11 origin (1993) J. Virol., 67, pp. 7131-7139
  • Sverdrup, F., Khan, S.A., Two E2 binding sites alone aresufficient to function as the minimal origin of replication of humanpapillomavirus type 18 DNA (1995) J. Virol., 69, pp. 1319-1323
  • Thierry, F., Howley, P.M., Functional analysis of E2 -mediated repression of the HPV18 P105 promoter (1991) New Biol., 3, pp. 90-100
  • Tan, S.H., Gloss, B., Bernard, H.U., During negativeregulation of the human papillomavirus-16 E6 promoter, the viral E2 protein can displace Sp1 from a proximal promoter element (1992) Nucleic Acids Res., 20, pp. 251-256
  • Dong, G., Broker, T.R., Chow, L.T., Human papillomavirustype 11 E2 proteins repress the homologous E6 promoter byinterfering with the binding of host transcription factors to adjacentelements (1994) J. Virol., 68, pp. 1115-1127
  • Steger, G., Corbach, S., Dose-dependent regulation of theearly promoter of human papillomavirus type 18 by the viral E2 protein (1997) J. Virol., 71, pp. 50-58
  • Hernandez-Ramon, E.E., Burns, J.E., Zhang, W., Walker, H.F., Allen, S., Antson, A.A., Maitland, N.J., Dimerization ofthe human papillomavirus type 16 E2 N terminus results in DNAlooping within the upstream regulatory region (2008) J. Virol., 82, pp. 4853-4861
  • Sim, J., Ozgur, S., Lin, B.Y., Yu, J.H., Broker, T.R., Chow, L.T., Griffith, J., Remodeling of the human papillomavirus type11 replication origin into discrete nucleoprotein particles and loopedstructures by the E2 protein (2008) J. Mol. Biol., 375, pp. 1165-1177
  • De Prat Gay, G., Gaston, K., Cicero, D.O., The papillomavirus E2 DNA binding domain (2008) Front. Biosci., 13, pp. 6006-6021
  • Hegde, R.S., Grossman, S.R., Laimins, L.A., Sigler, P.B., Crystal structure at 1.7 A° of the bovine papillomavirus-1 E2 DNAbindingdomain bound to its DNA target (1992) Nature, 359, pp. 505-512
  • Lima, L.M., De Prat Gay, G., Conformational changes and stabilization induced by ligand binding in the DNA-binding domainof the E2 protein from human papillomavirus (1997) J. Biol. Chem., 272, pp. 19295-19303
  • Mok, Y.K., Alonso, L.G., Lima, L.M., Bycroft, M., De Pratgay, G., Folding of a dimeric β-barrel: Residual structure in theurea denatured state of the human papillomavirus E2 DNA bindingdomain (2000) Protein Sci., 9, pp. 799-811
  • Hegde, R.S., The papillomavirus E2 proteins: Structure, function, and biology (2002) Annu. Rev. Biophys. Biomol. Struct., 31, pp. 343-360
  • De Prat Gay, G., Nadra, A.D., Corrales-Izquierdo, F.J., Alonso, L.G., Ferreiro, D.U., Mok, Y.K., The folding mechanismof a dimeric β-barrel domain (2005) J. Mol. Biol., 351, pp. 672-682
  • Bochkarev, A., Barwell, J.A., Pfuetzner, R.A., Bochkareva, E., Frappier, L., Edwards, A.M., Crystal structure of theDNA-binding domain of the Epstein-Barr virus origin-binding protein, EBNA1, bound to DNA (1996) Cell, 84, pp. 791-800
  • Oddo, C., Freire, E., Frappier, L., De Prat Gay, G., Mechanism of DNA recognition at a viral replication origin (2006) J. Biol. Chem., 281, pp. 26893-26903
  • Kim, S.S., Tam, J.K., Wang, A.F., Hegde, R.S., Thestructural basis of DNA target discrimination by papillomavirus E2 proteins (2000) J. Biol. Chem., 275, pp. 31245-31254
  • Hooley, E., Fairweather, V., Clarke, A.R., Gaston, K., Brady, R.L., The recognition of local DNA conformation by thehuman papillomavirus type 6 E2 protein (2006) Nucleic Acids Res., 34, pp. 3897-3908
  • Ferreiro, D.U., Dellarole, M., Nadra, A.D., De Prat Gay, G., Free energy contributions to direct readout of a DNAsequence (2005) J. Biol. Chem., 280, pp. 32480-32484
  • Ferreiro, D.U., De Prat Gay, G., A protein-DNA bindingmechanism proceeds through multi-state or two-state parallel pathways (2003) J. Mol. Biol., 331, pp. 89-99
  • Ferreiro, D.U., Sanchez, I.E., De Prat Gay, G., Transitionstate for protein-DNA recognition (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 10797-10802
  • Sanchez, I.E., Ferreiro, D.U., Dellarole, M., De Prat Gay, G., Experimental snapshots of a protein-DNA binding landscape (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 7751-7756
  • Nadra, A.D., Eliseo, T., Mok, Y.K., Almeida, C.L., Bycroft, M., Paci, M., De Prat Gay, G., Cicero, D.O., Solution structureof the HPV-16 E2 DNA binding domain, a transcriptional regulatorwith a dimeric β-barrel fold (2004) J. Biomol. NMR, 30, pp. 211-214
  • Dellarole, M., Sanchez, I.E., Freire, E., De Prat Gay, G., Increased Stability and DNA Site Discrimination of "Single Chain" Variants of the Dimeric β-Barrel DNA Binding Domain of theHuman Papillomavirus E2 Transcriptional Regulator (2007) Biochemistry, 46, pp. 12441-12450
  • Eliseo, T., Sanchez, I.E., Nadra, A.D., Dellarole, M., Paci, M., De Prat Gay, G., Cicero, D.O., Indirect DNA readout onthe protein side: Coupling between histidine protonation, globalstructural cooperativity, dynamics, and DNA binding of the humanpapillomavirus type 16 E2 C domain (2009) J. Mol. Biol., 388, pp. 327-344
  • Gray, D.M., Hung, S.H., Johnson, K.H., Absorption and circular dichroism spectroscopy of nucleic acid duplexes and triplexes (1995) Methods Enzymol., 246, pp. 19-34
  • Ferreiro, D.U., Lima, L.M., Nadra, A.D., Alonso, L.G., Goldbaum, F.A., De Prat Gay, G., Distinctive cognatesequence discrimination, bound DNA conformation, and bindingmodes in the E2 C-terminal domains from prototype human and bovine papillomaviruses (2000) Biochemistry, 39, pp. 14692-14701
  • Mok, Y.K., De Prat Gay, G., Butler, P.J., Bycroft, M., Equilibrium dissociation and unfolding of the dimeric humanpapillomavirus strain-16 E2 DNA-binding domain (1996) Protein Sci., 5, pp. 310-319
  • Alexander, K.A., Phelps, W.C., A fluorescence anisotropystudy of DNA binding by HPV-11 E2 C protein: A hierarchy of E2 -binding sites (1996) Biochemistry, 35, pp. 9864-9872
  • Schneider, T.D., Stephens, R.M., Sequence logos: A newway to display consensus sequences (1990) Nucleic Acids Res., 18, pp. 6097-6100
  • Crooks, G.E., Hon, G., Chandonia, J.M., Brenner, S.E., WebLogo: A sequence logo generator (2004) Genome Res., 14, pp. 1188-1190
  • Büchen-Osmond, C., The universal virus database ICTVdB (2003) Comput. Sci. Eng., 5 (3), pp. 16-25
  • Clamp, M., Cuff, J., Searle, S.M., Barton, G.J., The Jalview Java alignment editor (2004) Bioinformatics, 20, pp. 426-427
  • Wiseman, T., Williston, S., Brandts, J.F., Lin, L.N., Rapidmeasurement of binding constants and heats of binding using a newtitration calorimeter (1989) Anal. BioChem., 179, pp. 131-137
  • Houtman, J.C., Brown, P.H., Bowden, B., Yamaguchi, H., Appella, E., Samelson, L.E., Schuck, P., Studying multisite binaryand ternary protein interactions by global analysis of isothermaltitration calorimetry data in SEDPHAT: Application to adaptorprotein complexes in cell signaling (2007) Protein Sci., 16, pp. 30-42
  • Gray, D., Circular dichroism of protein nucleic acid interactions (1996) Circular Dichroism and the Conformational Analysis of Biomolecules, , (Fasman, G., Ed.), Plenum Press, New York
  • Baase, W.A., Johnson Jr., W.C., Circular dichroism and DNA secondary structure (1979) Nucleic Acids Res., 6, pp. 797-814
  • Bains, G., Freire, E., Calorimetric determination ofcooperative interactions in high affinity binding processes (1991) Anal. BioChem., 192, pp. 203-206
  • Freire, E., Schon, A., Velazquez-Campoy, A., Isothermaltitration calorimetry: General formalism using binding polynomials (2009) Methods Enzymol., 455, pp. 127-155
  • Brown, A., Analysis of cooperativity by isothermal titrationcalorimetry (2009) Int. J. Mol. Sci., 10, pp. 3457-3477
  • Schumacher, M.A., Miller, M.C., Grkovic, S., Brown, M.H., Skurray, R.A., Brennan, R.G., Structural basis forcooperative DNA binding by two dimers of the multidrug-bindingprotein QacR (2002) EMBO J., 21, pp. 1210-1218
  • Lacal, J., Guazzaroni, M.E., Gutierrez-Del-Arroyo, P., Busch, A., Velez, M., Krell, T., Ramos, J.L., Two levels of cooperativenessin the binding of TodT to the tod operon promoter (2008) J. Mol.Biol., 384, pp. 1037-1047
  • Dragan, A.I., Carrillo, R., Gerasimova, T.I., Privalov, P.L., Assembling the human IFN-β enhanceosome in solution (2008) J. Mol. Biol., 384, pp. 335-348
  • Weinberg, R.L., Veprintsev, D.B., Fersht, A.R., Cooperative binding of tetrameric p53 to DNA (2004) J. Mol. Biol., 341, pp. 1145-1159
  • Thain, A., Webster, K., Emery, D., Clarke, A.R., Gaston, K., DNA binding and bending by the human papillomavirus type16 E2 protein. Recognition of an extended binding site (1997) J. Biol. Chem., 272, pp. 8236-8242
  • Johnson, B.B., Dahl, K.S., Tinoco, Jr.I., Ivanov, V.I., Zhurkin, V.B., Correlations between deoxyribonucleic acid structuralparameters and calculated circular dichroism spectra (1981) Biochemistry, 20, pp. 73-78
  • Di Pietro, S.M., Centeno, J.M., Cerutti, M.L., Lodeiro, M.F., Ferreiro, D.U., Alonso, L.G., Schwarz, F.P., De Prat Gay, G., Specific antibody-DNA interaction: A novelstrategy for tight DNA recognition (2003) Biochemistry, 42, pp. 6218-6227
  • Alexandrov, B.S., Gelev, V., Bishop, A.R., Usheva, A., Rasmussen, K.O., DNA breathing dynamics in the presenceof a terahertz field (2010) Phys. Lett. A, 374, p. 1214

Citas:

---------- APA ----------
Dellarole, M., Sánchez, I.E. & De Prat Gay, G. (2010) . Thermodynamics of cooperative DNA recognition at a replication origin and transcription regulatory site. Biochemistry, 49(48), 10277-10286.
http://dx.doi.org/10.1021/bi1014908
---------- CHICAGO ----------
Dellarole, M., Sánchez, I.E., De Prat Gay, G. "Thermodynamics of cooperative DNA recognition at a replication origin and transcription regulatory site" . Biochemistry 49, no. 48 (2010) : 10277-10286.
http://dx.doi.org/10.1021/bi1014908
---------- MLA ----------
Dellarole, M., Sánchez, I.E., De Prat Gay, G. "Thermodynamics of cooperative DNA recognition at a replication origin and transcription regulatory site" . Biochemistry, vol. 49, no. 48, 2010, pp. 10277-10286.
http://dx.doi.org/10.1021/bi1014908
---------- VANCOUVER ----------
Dellarole, M., Sánchez, I.E., De Prat Gay, G. Thermodynamics of cooperative DNA recognition at a replication origin and transcription regulatory site. Biochemistry. 2010;49(48):10277-10286.
http://dx.doi.org/10.1021/bi1014908