Artículo

Di Lella, S.; Martí, M.A.; Croci, D.O.; Guardia, C.M.A.; Díaz-Ricci, J.C.; Rabinovich, G.A.; Caramelo, J.J.; Estrin, D.A. "Linking the structure and thermal stability of β-galactoside-binding protein galectin-1 to ligand binding and dimerization equilibria" (2010) Biochemistry. 49(35):7652-7658
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The stability of proteins involves a critical balance of interactions of different orders of magnitude. In this work, we present experimental evidence of an increased thermal stability of galectin-1, a multifunctional β-galactoside-binding protein, upon binding to the disaccharide lactose. Analysis of structural changes occurring upon binding of lectin to its specific glycans and thermal denaturation of the protein and the complex were analyzed by circular dichroism. On the other hand, we studied dimerization as another factor that may induce structural and thermal stability changes. The results were then complemented with molecular dynamics simulations followed by a detailed computation of thermodynamic properties, including the internal energy, solvation free energy, and conformational entropy. In addition, an energetic profile of the binding and dimerization processes is also presented. Whereas binding and cross-linking of lactose do not alter galectin-1 structure, this interaction leads to substantial changes in the flexibility and internal energy of the protein which confers increased thermal stability to this endogenous lectin. Given that an improved understanding of the physicochemical properties of galectin-glycan lattices may contribute to the dissection of their biological functions and prediction of their therapeutic applications, our study suggests that galectin binding to specific disaccharide ligands may increase the thermal stability of this glycan-binding protein, an effect that could influence its critical biological functions. © 2010 American Chemical Society.

Registro:

Documento: Artículo
Título:Linking the structure and thermal stability of β-galactoside-binding protein galectin-1 to ligand binding and dimerization equilibria
Autor:Di Lella, S.; Martí, M.A.; Croci, D.O.; Guardia, C.M.A.; Díaz-Ricci, J.C.; Rabinovich, G.A.; Caramelo, J.J.; Estrin, D.A.
Filiación:Departamento de Química Inorgánica, Analítica y Química-Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires, Argentina
Instituto Superior de Investigaciones Biológicas, CONICET-Facultad de Bioquímica, Universidad Nacional de Tucumán, San Miguel de Tucuman, Argentina
Fundación Instituto Leloir, Ciudad de Buenos Aires, Argentina
Palabras clave:Biological systems; Dichroism; Dimerization; Ligands; Molecular dynamics; Proteins; Sugars; Thermodynamic stability; Binding proteins; Biological functions; Circular dichroism; Conformational entropy; Different order; Disaccharide lactose; Experimental evidence; Galectin-1; Glycans; Internal energies; Ligand binding; Molecular dynamics simulations; Physicochemical property; Solvation free energies; Structural change; Therapeutic Application; Thermal denaturations; Thermal stability; Binding energy; beta galactoside; carbohydrate binding protein; disaccharide; galectin 1; glycan; lactose; lectin; recombinant protein; beta-galactoside; galactoside; galectin 1; ligand; article; bacterial cell; circular dichroism; dimerization; energy; entropy; Escherichia coli; human; ligand binding; molecular dynamics; nonhuman; priority journal; protein denaturation; protein structure; spectroscopy; structure analysis; thermodynamics; thermostability; binding site; chemical structure; chemistry; metabolism; protein folding; Binding Sites; Dimerization; Galactosides; Galectin 1; Humans; Ligands; Models, Molecular; Protein Folding; Thermodynamics
Año:2010
Volumen:49
Número:35
Página de inicio:7652
Página de fin:7658
DOI: http://dx.doi.org/10.1021/bi100356g
Título revista:Biochemistry
Título revista abreviado:Biochemistry
ISSN:00062960
CODEN:BICHA
CAS:galectin 1, 258495-34-0; lactose, 10039-26-6, 16984-38-6, 63-42-3, 64044-51-5; beta-galactoside; Galactosides; Galectin 1; Ligands
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00062960_v49_n35_p7652_DiLella

Referencias:

  • Fersht, A., Structure and Mechanism in Protein Science (1998) A Guide to Enzyme Catalysis and Protein Folding, , 1st ed., W. H. Freeman, New York
  • Branden, C., Tooze, J., (1991) Introduction to Protein Structure, , Garland Publishing, Inc., New York
  • Pace, C.N., Treviño, S., Prabhakaran, E., Scholtz, J.M., Protein structure, stability and solubility in water and other solvents (2004) Philos. Trans. R. Soc. London, Ser. B, 359, pp. 1225-1235
  • Wang, C., Eufemi, M., Turano, C., Giartosio, A., Influence of the Carbohydrate Moiety on the Stability of Glycoproteins (1996) Biochemistry, 35, p. 23
  • Latypov, R.F., Liu, D., Gunasekaran, K., Harvey, T.S., Razinkov, V.I., Raibekas, A.A., Structural and thermodynamic effects of ANS binding to human interleukin-1 receptor antagonist (2008) Protein Sci., 17, pp. 652-663
  • Celej, M.S., Montich, G.G., Fidelio, G., Protein stability induced by ligand binding correlates with changes in protein flexibility (2003) Protein Sci., 12, pp. 1496-1506
  • Fukada, H., Sturtevant, J.M., Quiocho, F.A., Thermodynamics of binding of l -arabinose and of d -galactose to the binding protein of Escherichia coli (1983) J. Biol. Chem., 258, pp. 13193-13198
  • Brandts, J.F., Lin, L.-N., Study of strong and ultratight protein interaction using differential scanning calorimetry (1990) Biochemistry, 29, pp. 6927-6940
  • Shrake, A., Ross, P.D., Ligand-induced biphasic protein denaturation (1990) J. Biol. Chem., 265, pp. 5055-5059
  • Shrake, A., Ross, P.D., Origin and consequences of ligand-induced multiphasic thermal protein denaturation (1992) Biopolymers, 32, pp. 925-940
  • Celej, M.S., Montich, G.G., Fidelio, G., Conformational flexibility of avidin: The influence of biotin binding (2004) Biochem. Biophys. Res. Commun., 325, pp. 922-927
  • Kamerzell, T.J., Unruh, J.R., Johnson, C.K., Middaugh, C.R., Conformational flexibility, hydration and state parameter fluctuations of fibroblast growth factor-10: Effects of ligand binding (2006) Biochemistry, 45 (51), pp. 15288-15300
  • Cooper, D.N.W., Barondes, S.H., God must love galectins: He made so many of them (1999) Glycobiology, 9 (10), pp. 979-984
  • Yang, R.Y., Rabinovich, G.A., Liu, F.T., Galectins: Structure, function and therapeutic potential (2008) Expert Rev. Mol. Med., 10, p. 17
  • Toscano, M., Bianco, G.A., Ilarregui, J.M., Croci, D.O., Correale, J., Hernandez, J.D., Zwirner, N.W., Rabinovich, G.A., Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death (2007) Nat. Immunol., 8 (8), pp. 825-834
  • Rabinovich, G.A., Toscano, M., Turning "sweet" on immunity: Galectin-glycan interactions in immune tolerance and inflammation (2009) Nat. Rev. Immunol., 9 (5), pp. 338-352
  • Ilarregui, J.M., Croci, D.O., Bianco, G.A., Toscano, M., Salatino, M., Vermeulen, M.E., Greffner, J.R., Rabinovich, G.A., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1 driven immunoregulatory circuit involving interleukin 27 and interleukin 10 (2009) Nat. Immunol., 10 (9), pp. 981-991
  • Lopez-Lucendo, M.F., Solis, D., Andre, S., Hirabayashi, J., Kasai, K., Kaltner, H., Gabius, H.J., Romero, A., Growth-regulatory human galectin-1: Crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding (2004) J. Mol. Biol., 343 (4), pp. 957-970
  • Ford, M.G., Weimar, T., Kölhi, T., Woods, R.J., Molecular Dynamics Simulations of Galectin-1-oligosaccharides Complexes Reveal the Molecular Basis of Ligand Diversity (2003) Proteins: Struct., Funct., Genet., 53, pp. 229-240
  • Di Lella, S., Marti, M.A., Alvarez, R.M.S., Estrin, D.A., Díaz Ricci, J.C., Characterization of the Carbohydrate Recognition Domain of Galectin-1 in Terms of Solvent Occupancy (2007) J. Phys. Chem. B, 111, pp. 7360-7366
  • Cho, M., Cummings, R.D., Galectin-1, a β-galactoside-binding lectin in Chinese hamster ovary cells. I. Physical and chemical characterization (1995) J. Biol. Chem., 270 (10), pp. 5198-5206
  • Ahmad, N., Gabius, H., Sabesan, S., Oscarson, S., Brewer, C.F., Thermodynamic binding studies of bivalent oligosaccharides to galectin-1, galectin-3, and the carbohydrate recognition domain of galectin-3 (2004) Glycobiology, 14 (9), pp. 817-825
  • Stowell, S.R., Cho, M., Feasley, C.L., Arthur, C.M., Song, X., Colucci, J.K., Karmakar, S., Cummings, R.D., Ligand reduces galectin-1 sensitivity to oxidative inactivation by enhancing dimer formation (2009) J. Biol. Chem., 284 (8), pp. 4989-4999
  • Scott, K., Weinberg, C., Galectin-1: A bifunctional regulator of cellular proliferation (2004) Glycoconjugate J., 19 (7-9), pp. 467-477
  • Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M., Urashima, T., Muller, W.E., Oligosaccharide specificity of galectins: A search by frontal affinity chromatography (2002) Biochim. Biophys. Acta, 1572, pp. 232-254
  • Barrionuevo, P., Beigier-Bompadre, M., Ilarregui, J.M., Toscano, M., Bianco, G.A., Isturiz, M.A., Rabinovich, G.A., A novel function for galectin-1 at the crossroad of innate and a adaptive immunity: Galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic ERK-dependent pathway (2007) J. Immunol., 178 (1), pp. 436-445
  • Pace, K.E., Hahn, H.P., Baum, L.G., Preparation of recombinant human galectin-1 and use in T cell death assays (2003) Methods Enzymol., 363, pp. 499-518
  • Cho, M., Cummings, R.D., Characterization of monomeric forms of galectin-1 generated by site-directed mutagenesis (1996) Biochemistry, 35, pp. 13081-13088
  • Case, D.A., Darden, T.A., Cheatman III, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Kollman, P.A., (2004) AMBER 8, , University of California, San Francisco
  • Cheatham, T.E., Cieplak, P., Kollman, P.A., A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat (1999) J. Biomol. Struct. Dyn., 16, pp. 845-862
  • Kirschner, K.N., Woods, R.J., Solvent interactions determine carbohydrate conformation (2001) Proc. Natl. Acad. Sci. U.S.A., 98 (19), pp. 10541-10545
  • Case, D.A., Darden, T.A., Cheatham, T.E., Simmerling, C., Wang, J., Duke, R.E., Luo, R., Kollman, P.A., (2006) AMBER 9, , University of California, San Francisco
  • Case, D.A., Cheatham, T.E., Darden, T.A., Gohlke, H., Luo, R., Merz, K.M.J., Onufriev, A., Woods, R.J., The Amber biomolecular simulation programs (2005) J. Comput. Chem., 26, pp. 1668-1688
  • Constanciel, R., Contreras, R., Self-Consistent Field-Theory of Solvent Effects Representation by Continuum Models: Introduction of Desolvation Contribution (1984) Theor. Chim. Acta, 65, pp. 1-11
  • Still, W.C., Tempczyrk, A., Hawley, R.C., Hendrickson, T., Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics (1990) J. Am. Chem. Soc., 112, pp. 6127-6129
  • Schlitter, J., Estimation of absolute and relative entropies of macromolecules using the covariance matrix (1993) Chem. Phys. Lett., 215, pp. 617-621
  • Andricioaei, I., Karplus, M., On the calculation of entropy from covariance matrices of the atomic fluctuations (2001) J. Chem. Phys., 115 (14), pp. 6289-6292
  • Harris, S.A., Gavathiotis, E., Searle, M.S., Orozco, M., Laughton, C.A., Cooperativity in drug-DNA recognition: A molecular dynamics study (2001) J. Am. Chem. Soc., 123, pp. 12658-12663
  • Lee Whitmore, B.A.W., Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases (2008) Biopolymers, 89 (5), pp. 392-400
  • Charalambous, K., O'Reilly, A.O., Bullough, P., Wallace, B.A., Thermal and chemical unfolding and refolding of a eukaryotic sodium channel (2009) Biochim. Biophys. Acta, 1788, pp. 1279-1286
  • Waldron, T.T., Murphy, K.P., Stabilization of Proteins by Ligand Binding: Application to Drug Screening and Determination of Unfolding Energetics (2003) Biochemistry, 42, pp. 5058-5064
  • Todorovic, S., Leal, S.S., Salgueiro, C.A., Zebger, I., Hildebrandt, P., Murgida, D.H., Gomes, C.M., A Spectroscopic Study of the Temperature Induced Modifications on Ferredoxin Folding and Iron-Sulfur Moieties (2007) Biochemistry, 46, pp. 10733-10738
  • Matulis, D., Kranz, J.K., Salemme, F.R., Todd, M.J., Thermodynamic Stability of Carbonic Anhydrase: Measurments of Binding Affinity and Stoichiometry Using ThermoFluor (2005) Biochemistry, 44, pp. 5258-5266

Citas:

---------- APA ----------
Di Lella, S., Martí, M.A., Croci, D.O., Guardia, C.M.A., Díaz-Ricci, J.C., Rabinovich, G.A., Caramelo, J.J.,..., Estrin, D.A. (2010) . Linking the structure and thermal stability of β-galactoside-binding protein galectin-1 to ligand binding and dimerization equilibria. Biochemistry, 49(35), 7652-7658.
http://dx.doi.org/10.1021/bi100356g
---------- CHICAGO ----------
Di Lella, S., Martí, M.A., Croci, D.O., Guardia, C.M.A., Díaz-Ricci, J.C., Rabinovich, G.A., et al. "Linking the structure and thermal stability of β-galactoside-binding protein galectin-1 to ligand binding and dimerization equilibria" . Biochemistry 49, no. 35 (2010) : 7652-7658.
http://dx.doi.org/10.1021/bi100356g
---------- MLA ----------
Di Lella, S., Martí, M.A., Croci, D.O., Guardia, C.M.A., Díaz-Ricci, J.C., Rabinovich, G.A., et al. "Linking the structure and thermal stability of β-galactoside-binding protein galectin-1 to ligand binding and dimerization equilibria" . Biochemistry, vol. 49, no. 35, 2010, pp. 7652-7658.
http://dx.doi.org/10.1021/bi100356g
---------- VANCOUVER ----------
Di Lella, S., Martí, M.A., Croci, D.O., Guardia, C.M.A., Díaz-Ricci, J.C., Rabinovich, G.A., et al. Linking the structure and thermal stability of β-galactoside-binding protein galectin-1 to ligand binding and dimerization equilibria. Biochemistry. 2010;49(35):7652-7658.
http://dx.doi.org/10.1021/bi100356g