Artículo

Nicoletti, F.P.; Comandini, A.; Bonamore, A.; Boechi, L.; Boubeta, F.M.; Feis, A.; Smulevich, I.; Boffi, A. "Sulfide binding properties of truncated hemoglobins" (2010) Biochemistry. 49(10):2269-2278
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The truncated hemoglobins from Bacillus subtilis (Bs-trHb) and Thermobifida fusca (Tf-trHb) have been shown to form high-affinity complexes with hydrogen sulfide in their ferric state. The recombinant proteins, as extracted, from Escherichia coli cells after overexpression, are indeed partially saturated with sulfide, and even highly purified samples still contain a small but significant amount of iron-bound sulfide. Thus, a complete thermodynamic and kinetic study has been undertaken by means of equilibrium and kinetic displacement experiments to assess the relevant sulfide binding parameters. The body of experimental data indicates that both proteins possess a high, affinity for hydrogen sulfide (K= 5.0 × 106 and 28 × 106 M-1 for Bs-trHb and Tf-trHb, respectively, at pH 7.0), though, lower with, respect to that reported previously for the sulfide avid Lucina pectinata I hemoglobins (2.9 × 108 M-1). From the kinetic point of view, the overall high affinity resides in the slow rate of sulfide release, attributed to hydrogen bonding stabilization of the bound ligand by distal residue WG8. A set of point mutants in which these residues have been replaced with Phe indicates that the WG8 residue represents the major kinetic barrier to the escape of the bound sulfide species. Accordingly, classical molecular dynamics simulations of SH.....-bound ferric Tf-trHb show that WG8 plays a key role in the stabilization of coordinated SH -whereas the YCD1 and. YB10 contributions are negligible. Interestingly, the triple Tf-trHb mutant bearing only Phe residues in the relevant B10, G8, and CD1 positions is endowed with a higher overall affinity for sulfide characterized, by a very fast second-order rate constant and 2 order of magnitude faster kinetics of sulfide release with respect to the wild-type protein. Resonance Raman spectroscopy data indicate that the sulfide adducts are typical of a ferric iron, low-spin derivative. In analogy with other low-spin ferric sulfide adducts, the strong band at 375 cm-1 is tentatively assigned to a Fe-S stretching band. The high affinity for hydrogen, sulfide is thought to have a possible physiological significance as H2S is produced in bacteria at metabolic steps involved in cysteine biosynthesis and hence in thiol redox homeostasis. © 2010 American Chemical Society.

Registro:

Documento: Artículo
Título:Sulfide binding properties of truncated hemoglobins
Autor:Nicoletti, F.P.; Comandini, A.; Bonamore, A.; Boechi, L.; Boubeta, F.M.; Feis, A.; Smulevich, I.; Boffi, A.
Filiación:Istituto Pasteur, Fondazione Cenci-Bolognetti, Department of Biochemical Sciences, University of Rome la Sapienza, Piazzale Aldo Moro 5, 1-00185 Rome, Italy
Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
Departamento de Química Inorgánica, Analítica, y Química Física, INQUIMAE-CONICET, Ciudad Universitaria, Buenos Aires, Argentina
Palabras clave:Bacillus Subtilis; Bearing-only; Binding parameter; Binding properties; Bound ligands; Classical molecular dynamics; Cysteine biosynthesis; Escherichia coli cells; Experimental data; Ferric iron; High affinity; Hydrogen bonding stabilization; Kinetic barrier; Kinetic study; Lucina pectinata; Order of magnitude; Over-expression; Partially saturated; Recombinant protein; Resonance Raman spectroscopy; Second-order rate constants; Stretching bands; Sulfide species; Thermobifida fusca; Truncated hemoglobins; Wild-type proteins; Bacteriology; Binding energy; Biochemistry; Coordination reactions; Escherichia coli; Hemoglobin; Hydrogen; Hydrogen bonds; Molecular dynamics; Raman spectroscopy; Rate constants; Spin dynamics; Stabilization; Sulfur determination; Hydrogen sulfide; bacterial protein; cysteine; ferric ion; hydrogen sulfide; recombinant protein; truncated hemoglobin; article; Bacillus subtilis; bacterial cell; bacterium; binding affinity; biosynthesis; Escherichia coli; homeostasis; hydrogen bond; kinetics; molecular dynamics; nonhuman; point mutation; priority journal; protein analysis; Raman spectrometry; Thermobifida fusca; thermodynamics; Actinomycetales; Bacillus subtilis; Bacterial Proteins; Kinetics; Molecular Dynamics Simulation; Protein Binding; Protein Conformation; Spectrophotometry, Ultraviolet; Sulfides; Thermodynamics; Truncated Hemoglobins; Bacillus subtilis; Escherichia coli; Lucina pectinata; Thermobifida fusca
Año:2010
Volumen:49
Número:10
Página de inicio:2269
Página de fin:2278
DOI: http://dx.doi.org/10.1021/bi901671d
Título revista:Biochemistry
Título revista abreviado:Biochemistry
ISSN:00062960
CODEN:BICHA
CAS:cysteine, 4371-52-2, 52-89-1, 52-90-4; ferric ion, 20074-52-6; hydrogen sulfide, 15035-72-0, 7783-06-4; Bacterial Proteins; Sulfides; Truncated Hemoglobins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00062960_v49_n10_p2269_Nicoletti

Referencias:

  • Wittenberg, J.B., Bolognesi, M., Wittenberg, B.A., Guertin, M., Truncated hemoglobins: A new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants (2002) J. Biol. Chem., 227, pp. 871-874
  • Wu, G., Wainwright, L.M., Poole, R.K., Microbial globins (2003) Adv. Micro Physial., 47, pp. 255-310
  • Giangiacomo, A., Ilari, L., Boffi, A., Morea, V., Chiancone, E., The truncated oxygen-avid hemoglobin from Bacillus subtilis: X-ray structure and ligand binding properties (2005) J. Biol. Chem, 280, pp. 9192-9202
  • Bonamore, A., Ilari, A., Giangiacomo, L., Bellelli, A., Morea, V., Boffi, A., A novel thermostable hemoglobin from the actinobacterium Thermobifida fusca (2005) FEBS J., 272, pp. 4189-4201
  • Ilari, A., Kjelgaard, P., Von Wachenfeldt, C., Catacchio, B., Chiancone, E., Boffi, A., Crystal structure and ligand binding properties of the truncated hemoglobin from Geobacillus stearothermophilus (2007) Arch, Biochem, Biophys., 457, pp. 85-94
  • Milani, M., Pesce, A., Nardini, M., Ouellet, H., Ouellet, Y., Dewilde, S., Bocedi, A., Bolognesi, M., Structural, bases for heme binding and diatomic ligand recognition in truncated hemoglobins (2005) J. Inore. Biochem, 99, pp. 97-109
  • Milani, M., Savard, P.Y., Ouellet, H., Ascenzi, P., Guertin, M., Bolognesi, M., A TyrCDl/TrpG8 hydrogen bond, network and a TyrB10TyrCD1 covalent link shape the heme distal site of Mycobacterium tuberculosis hemoglobin. O (2003) Proc. Natl. Acad. Sci. U.S.A., 100, pp. 5166-15111
  • Ouellet, I.L., Juszczak, L., Dantsker, D., Samuni, U., Ouellet, Y.H., Savard, P.-Y., Wittenberg, J.B., Guertin, M., Reactions of Mycobacterium tuberculosis truncated hemoglobin O with ligands reveal a novel ligand-inclusive hydrogen bond network (2003) Biochemistry, 42, pp. 5764-5774
  • Mukai, M., Savard, P.Y., Ouellet, H., Guertin, M., Yeh, S.R., Unique ligand-protein interactions in a new truncated hemoglobin from Mycobacterium tuberculosis (2002) Biochemistry, 41, pp. 3897-3905
  • Feis, A., Lapini, A., Catacchio, B., Brogioni, S., Foggi, P., Chiancone, E., Boffi, A., Smulevich, G., Unusually strong H-bonding to the heme ligand and fast geminate recombination dynamics of the carbon, monoxide complex of Bacillus subtilis truncated hemoglobin (2008) Biochemistry, 47, pp. 902-910
  • Kraus, D.W., Wittenberg, J.B., Hemoglobins of the Lucina pectinata/bacteria symbiosis. I. Molecular properties, kinetics and equilibria of reactions with ligands (1990) J. Biol. Chem., 265, pp. 6043-6053
  • Boffi, A., Wittenberg, J.B., Chiancone, E., Circular dichroism spectroscopy of Lučina i hemoglobin (1997) FEBS Lett., 411, pp. 335-338
  • Siegel, L.M., Davis, P.S., Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of entero bacteria. IV. the Escherichia coli hemoflavoprotein: Subunit structure and dissociation into hemoprotein and flavoprotein components (1974) J. Biol. Chem., 249, pp. 1587-1598
  • Nakamura, T., Iwahashi, H., Eguchi, Y., Enzymatic proof for the identity of the S-sulfocysteine synthase and cysteine synthase B of Salmonella typhimurium (1984) J. Bacterio!., 158, pp. 1122-1127
  • Filutowicz, M., Wiater, A., Hulanicka, D., Delayed, inducibility of sulphite reductase in cysM1 mutants of Salmonella typhimurium under anaerobic conditions (1982) J. Gen. Microbiol., 128, pp. 1791-1794
  • Boyer, P.D., Spectrophotometric study of the reaction of protein sulfhydryl groups with organic mercurials (1954) J. Am. Chem. Soc., 76, pp. 4331-4337
  • Jorgensen, W.L., Chandrasekar, J., Madura, J., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J. Chem Phys., 9, pp. 926-935
  • Luty, B.A., Tironi, I.G., Van Gunsteren, W.F., Latticesum methods for calculating electrostatic interactions in. molecular simulations (1995) J., Chem, Phys., 103, pp. 3014-3021
  • Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E., Debolt, S., Ferguson, D., Kollman, P., AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural, and energetic properties of molecules (1995) Comput. Phys. Commun., 91, pp. 1-41
  • Crespo, A., Martí, M.A., Kalko, S.G., Morreale, A., Orozco, M., Gelpi, J.L., Luque, F.J., Estrin, D.A., Theoretical study of the truncated hemoglobin HbN: Exploring the molecular basis of the NO detoxification mechanism (2005) J. Am. Chem. Soc., 127, pp. 4433-4444
  • Cerda, J., Echevarria, Y., Morales, E., Lopez-Garriga, J., Resonance Raman studies of the heme-ligand active site of haemoglobin i from Lucina pectinata (1999) Biosoectroscopy, 5, pp. 289-301
  • Hu, S., Morris, I.K., Singh, J.P., Smith, K.M., Spiro, T.G., Complete Assignment of Cytochrome c Resonance Raman Spectra via Enzymatic Reconstitution with Isotopically Labeled Hemes (1993) J. Am, Chem, Soc., 115, pp. 12466-112458
  • Peterson, E.S., Friedman, J.M., Chienand, E.Y.T., Sligar, S.G., Functional Implications of the proximal hydrogen-bonding network in myoglobin: A resonance Raman and kinetic study of Leu89, Ser92, His97, and F-Helix swap mutants (1998) Biochemistry, 37, pp. 12301-12319
  • Cerda-Colón, J.F., Silfa, E., López-Garriga, J., Unusual rocking freedom of the heme in the hydrogen sulfide-binding hemoglobin from lucina pectinata (1998) J. Am. Chem. Soc., 120, pp. 9312-9317
  • Nguyen, B.D., Zhao, X., Vyas, K., La Mar, G.N., Lile, R.A., Brucker, E.A., Phillips Jr., G.N., Wittenberg, J.B., Solution and crystal structures of a sperm whale myoglobin triple mutant that mimics the sulfide-binding hemoglobin from Lučina pectinata (1998) J. Biol. Chem., 273, pp. 9517-9526
  • Pietri, R., Lewis, A., León, R.G., Casabona, G., Kiger, L., Yeh, S.R., Fernandez-Alberti, S., Lópezgarriga, J., Factors controlling the reactivity of hydrogen sulfide with hemoproteins (2009) Biochemistry, 48, pp. 4881-4894
  • Larsson, J.T., Rogstam, A., Von Wachenfeldt, C., YjbH is a novel negative effector of the disulfide stress regulator, Spx, in Bacillus subtilis (2007) Mol. Microbiol., 66, pp. 669-684
  • Rizzi, M., Wittenberg, J.B., Coda, A., Fasano, M., Ascenzi, P., Bolognesi, M., Structure of the sulfide-reactive hemoglobin, from the clam Lucina pectinata: Crystallographic analysis at 1.5 Å resolution (1994) J. Mol. Biol, 244, pp. 86-99
  • Rizzi, M., Wittenberg, J.B., Coda, A., Ascenzi, P., Bolognesi, M., Structural bases for sulfide recognition in Lucina pectinata hemoglobin. i (1996) J. Mol. Biol., 258, pp. 1-5
  • Biswal, H.S., Shirhatti, P.R., Wategaonkar, S., O-H⋯-O versus O-H- ⋯ -S hydrogen bonding I: Experimental and computational studies on the p-Cresol · H2O and p-Cresol · H2S complexes (2009) J. Phys. Chem. A, 113, pp. 5633-5664
  • Dey, A., Okamura, T.-A., Ueyama, N., Hedman, B., Hodgson, K.O., Solomon, E.I., Sulfur K-edge XAS and DFT calculations on P450 model, complexes: Effects of hydrogen bonding on electronic structure and redox potentials (2005) J. Am, Chem. Soc., 127, pp. 12046-12053
  • Gavira, J.A., Camara-Artigas, A., De Jesus-Bonilla, W., Lopezgarriga, J., Lewis, A., Pietri, R., Yeh, S.-R., Garcýa-Ruiz, J.M., Structure and ligand selection of hemoglobin. II from Lucina pectinata (2008) J. Biol. Chem., 283, pp. 9414-9423
  • Fernandez-Alberti, S., Bacelo, D.E., Binning Jr., R.C., Echave, J., Chergui, M., Lopez-Garriga, J., Sulfide-binding hemoglobins: Effects of mutations on active-site flexibility (2006) Biophys. J., 91, pp. 1698-1709
  • Boechi, L., Mañez, P.A., Luque, F.J., Marti, M.A., Estrin, D.A., Unraveling the molecular basis for ligand binding in truncated hemoglobins: The trHbO Bacillus subtilis case (2010) Proteins, 78, pp. 962-970
  • Champion, P.M., Stallard, B.R., Wagner, G.C., Gunsalus, I.C., Resonance Raman detection of an Fe-S bond in cytochrome P450cam (1982) J. Am, Chem, Sac., 104, pp. 5469-5472
  • Bangcharoenpaurpong, O., Hall, K.S., Hager, L.P., Champion, P.M., Resonance Raman studies of isotopically labeled chloroperoxidase (1986) Biochemistry, 25, pp. 2374-2378
  • Santolini, J., Roman, M., Stuehr, D.J., Mattioli, T.A., Resonance Raman study of Bacillus subtilis NO synthase-like protein: Similarities and differences with mammalian NO synthases (2006) Biochemistry, 45, pp. 1480-1489
  • Schelvis, J.P., Berka, V., Babcock, G.T., Tsai, A.L., Resonance Raman detection of the Fe-S bond in endothelial nitric oxide synthase (2002) Biochemistry, 41, pp. 5695-5701
  • Todorovic, S., Rodrigues, J.V., Pinto, A.F., Thomsen, C., Hildebrandt, P., Teixeira, M., Murgida, D.H., Resonance Raman study of the superoxide reductase from Archaeoelobus fulgidtus, E12 mutants and a 'natural variant' (2009) Phys. Chem, Chem, Phys., 11, pp. 1809-1815
  • Leu, B.M., Ching, T.H., Zhao, J., Sturhahn, W., Alp, E.E., Sage, J.T., Vibrational dynamics of iron in cytochrome c (2009) J. Phys. Chem, B, 113, pp. 2193-2200

Citas:

---------- APA ----------
Nicoletti, F.P., Comandini, A., Bonamore, A., Boechi, L., Boubeta, F.M., Feis, A., Smulevich, I.,..., Boffi, A. (2010) . Sulfide binding properties of truncated hemoglobins. Biochemistry, 49(10), 2269-2278.
http://dx.doi.org/10.1021/bi901671d
---------- CHICAGO ----------
Nicoletti, F.P., Comandini, A., Bonamore, A., Boechi, L., Boubeta, F.M., Feis, A., et al. "Sulfide binding properties of truncated hemoglobins" . Biochemistry 49, no. 10 (2010) : 2269-2278.
http://dx.doi.org/10.1021/bi901671d
---------- MLA ----------
Nicoletti, F.P., Comandini, A., Bonamore, A., Boechi, L., Boubeta, F.M., Feis, A., et al. "Sulfide binding properties of truncated hemoglobins" . Biochemistry, vol. 49, no. 10, 2010, pp. 2269-2278.
http://dx.doi.org/10.1021/bi901671d
---------- VANCOUVER ----------
Nicoletti, F.P., Comandini, A., Bonamore, A., Boechi, L., Boubeta, F.M., Feis, A., et al. Sulfide binding properties of truncated hemoglobins. Biochemistry. 2010;49(10):2269-2278.
http://dx.doi.org/10.1021/bi901671d