Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Galectin-1 (Gal-1), a member of a family of evolutionarily conserved glycan-binding proteins, binds specifically to poly-N-acetyllactosamine-enriched glycoconjugates. Through interactions with these glycoconjugates, this protein modulates inflammatory responses and contributes to tumor progression and immune cell homeostasis. The carbohydrate recognition domain includes the single protein tryptophan (Trp68). UV resonance Raman spectroscopy and molecular dynamic simulation were used to examine the change in the environment of the Trp on ligand binding. The UV Raman spectra and the calculated water radial distribution functions show that, while no large structural changes in the protein follow lactose binding, substantial solvent reorganization occurs. These new insights into the microscopic role of water molecules in Gal-1 binding to its specific carbohydrate ligands provides a better understanding of the physicochemical properties of Gal-1 - saccharide interactions, which will be useful for the design of synthetic inhibitors for therapeutic purposes. © 2009 American Chemical Society.

Registro:

Documento: Artículo
Título:Critical role of the solvent environment in galectin-1 binding to the disaccharide lactose
Autor:Di Lella, S.; Ma, L.; Díaz Ricci, J.C.; Rabinovich, G.A.; Asher, S.A.; Álvarez, R.M.S.
Filiación:Instituto Superior de Investigaciones Biológicas (CONICET-UNT), Facultad de Bioqúimica, Química y Farmacia, Universidad Nacional de Tucumán, S. M. de Tucumán, Tucuman, Argentina
Instituto de Qúimica-F́isica, Facultad de Bioqúimica, Química y Farmacia, Universidad Nacional de Tucumán, S. M. de Tucumán, Tucuman, Argentina
Departamento de Química Inorgánica, Analítica y Química-Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Department of Chemistry, Chevron Science Center, University of Pittsburgh, Pittsburgh, PN 15260, United States
Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
Palabras clave:Binding proteins; Carbohydrate ligands; Carbohydrate-recognition domains; Disaccharide lactose; Galectin-1; Glycoconjugates; Immune cells; Inflammatory response; Ligand bindings; Molecular dynamic simulations; Physico-chemical properties; Radial distribution functions; Role of waters; Solvent environments; Solvent reorganizations; Structural changes; Synthetic inhibitors; Tumor progressions; Uv-raman spectrum; Uv-resonance raman spectroscopies; Amino acids; Biochemistry; Ligands; Molecular dynamics; Organic compounds; Polysaccharides; Raman scattering; Raman spectroscopy; Sugars; Distribution functions; carbohydrate; disaccharide; galectin 1; glycan; lactose; solvent; tryptophan; LGALS1 protein, human; solvent; water; article; genetic conservation; homeostasis; human; immunocompetent cell; inflammation; ligand binding; molecular dynamics; nonhuman; physical chemistry; priority journal; protein carbohydrate interaction; protein family; Raman spectrometry; tumor growth; chemical model; chemistry; comparative study; computer simulation; metabolism; protein binding; thermodynamics; X ray crystallography; Computer Simulation; Crystallography, X-Ray; Galectin 1; Humans; Lactose; Models, Chemical; Protein Binding; Solvents; Spectrum Analysis, Raman; Thermodynamics; Water
Año:2009
Volumen:48
Número:4
Página de inicio:786
Página de fin:791
DOI: http://dx.doi.org/10.1021/bi801855g
Título revista:Biochemistry
Título revista abreviado:Biochemistry
ISSN:00062960
CODEN:BICHA
CAS:galectin 1, 258495-34-0; lactose, 10039-26-6, 16984-38-6, 63-42-3, 64044-51-5; tryptophan, 6912-86-3, 73-22-3; water, 7732-18-5; Galectin 1; Lactose, 63-42-3; LGALS1 protein, human; Solvents; Water, 7732-18-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00062960_v48_n4_p786_DiLella

Referencias:

  • Cooper, D.N.W., Barondes, S.H., God must love galectins; he made so many of them (1999) Glycobiology, 9, pp. 979-984
  • Cho, M., Cummings, R.D., Galectin-1, a β-galactoside- binding lectin in Chinese hamster ovary cells. I. Physical and chemical characterization (1995) J. Biol. Chem, 270, pp. 5198-5206
  • Toscano, M.A., Ilarregui, J.M., Bianco, G.A., Campagna, L., Croci, D.O., Salatino, M., Rabinovich, G.A., Dissecting the pathophysiologic role of endogenous lectins: Glycan-binding proteins with cytokine-like activity? (2007) Cytokine Growth Factor Rev, 18, pp. 57-71
  • Toscano, M., Bianco, G.A., Ilarregui, J.M., Croci, D.O., Correale, J., Hernandez, J.D., Zwirner, N.W., Rabinovich, G.A., Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death (2007) Nat. Immunol, 8, pp. 825-834
  • Rabinovich, G.A., Toscano, M., Jackson, D.A., Vasta, G., Functions of cell surface galectin-glycoprotein lattices (2007) Curr. Opin. Struct. Biol, 17, pp. 513-520
  • Rabinovich, G.A., Galectin-1 as a potential cancer target (2005) Br. J. Cancer, 92, pp. 1188-1192
  • Rabinovich, G.A., Liu, F.T., Hirashima, M., Anderson, A., An emerging role for lectins in tuning the immune response: Lessons from experimental models of inflammatory disease, autoimmunity and cancer (2007) Scand. J. Immunol, 66, pp. 143-158
  • Elola, M.T., Wolfenstein-Todel, C., Troncoso, M.F., Vasta, G.R., Rabinovich, G.A., Galectins: Matricellular glycan-binding proteins linking cell adhesion, migration and survival (2007) Cell. Mol. Life Sci, 64, pp. 1679-1700
  • Andre, S., Kojima, S., Yamazaki, N., Fink, C., Kaltner, H., Kayser, K., Gabius, H.J., Galectins-1 and -3 and their ligands in tumor biology. Non-uniform properties in cell-surface presentation and modulation of adhesion to matrix glycoproteins for various tumor cell lines, in biodistribution of free and liposome-bound galectins and in their expression by breast and colorectal carcinomas with/without metastatic propensity (1999) J. Cancer Res. Clin. Oncol, 125, pp. 461-474
  • Walzel, H., Schulz, U., Neels, P., Brock, J., Galectin-1, a natural ligand for the receptor-type protein tyrosine phosphatase CD45 (1999) Immunol. Lett, 67, pp. 193-202
  • Gu, M., Wang, W., Song, W.K., Cooper, D.N., Kaufman, S.J., Selective modulation of the interaction of α 7β1 integrin with fibronectin and laminin by L-14 lectin during skeletal muscle differentiation (1994) J. Cell Sci, 107, pp. 175-181
  • Kopitz, J., von Reitzenstein, C., Burchert, M., Cantz, M., Gabius, H.J., Galectin-1 is a major receptor for ganglioside GM1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture (1998) J. Biol. Chem, 273, pp. 11205-11211
  • Ford, M.G., Weimar, T., Kölhi, T., Woods, R.J., Molecular Dynamics Simulations of Galectin-1-oligosaccharides Complexes Reveal the Molecular Basis of Ligand Diversity (2003) Proteins: Struct., Funct., Genet, 53, pp. 229-240
  • Ahmad, N., Gabius, H., Sabesan, S., Oscarson, S., Brewer, C.F., Thermodynamic binding studies of bivalent oligosaccharides to galectin-1, galectin-3, and the carbohydrate recognition domain of galectin-3 (2004) Glycobiology, 14, pp. 817-825
  • Asensio, J. L., Siebert, H.-C., von der Lieth, C.-W., Laynez, J., Bruix, M., Soedjanaamadja, U. M., Beintema, J. J., Canada, F. J., Gabius, H., and Jiménez-Barbero, J. (2000) NMR Investigations of Protein-Carbohydrate Interactions: Studies on the Relevance of Trp/Tyr Variations in Lectin Binding Sites as Deduced from Titration Microcalorimetry and NMR Studies on Hevein Domains. Determination of the NMR Structure of the Complex Between Pseudohevein and N,N′,N′-Triacetylchitotriose. Proteins: Struct., Funct., Genet. 40, 218-236; Clarke, C., Woods, R.J., Gluska, J., Cooper, A., Nutley, M.A., Boons, G., Involvement of Water in Carbohydrate-Protein Binding (2001) J. Am. Chem. Soc, 123, pp. 12238-12247
  • Sörme, P., Arnoux, P., Kahl-Knutsson, B., Leffler, H., Rini, J.M., Nilsson, U.J., Structural and Thermodynamic Studies on Cation-π interactions in Lectin-Ligand Complexes: High-Affinity Galectin-3 Inhibitors through Fine-Tuning of an Arginine-Arene Interaction (2005) J. Am. Chem. Soc, 127, pp. 1737-1743
  • Rabinovich, G.A., Cumashi, A., Bianco, G.A., Ciavardelli, D., Iurisci, I., D'Egidio, M., Piccolo, E., Iacobelli, S., Synthetic lactulose amines: Novel class of anticancer agents that induce tumor-cell apoptosis and inhibit galectin-mediated homotypic cell aggregation and endothelial cell morphogenesis (2005) Glycobiology, 16, pp. 210-220
  • Lopez-Lucendo, M.F., Solis, D., Andre, S., Hirabayashi, J., Kasai, K., Kaltner, H., Gabius, H.J., Romero, A., Growth-regulatory human galectin-1: Crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding (2004) J. Mol. Biol, 343, pp. 957-970
  • Di Lella, S., Marti, M.A., Alvarez, R.M.S., Estrin, D.A., Díaz Ricci, J.C., Characterization of the Carbohydrate Recognition Domain of Galectin-1 in Terms of Solvent Occupancy (2007) J. Phys. Chem. B, 111, pp. 7360-7366
  • Asher, S., UV Resonance Raman spectroscopy for analytical, physical, and biophysical chemistry (1993) Anal. Chem, 65, pp. 201-210
  • Chi, Z., Asher, S., UV resonance Raman determination of protein acid denaturation: Selective unfolding of helical segments of horse myoglobin (1998) Biochemistry, 37, pp. 2865-2872
  • Ahmed, Z., Beta, I.A., Mikhonin, A.V., Asher, S., UV-Resonance Raman Thermal Unfolding Study of Trp-Cage Shows That It Is Not a Simple Two-State Miniprotein (2005) J. Am. Chem. Soc, 127, pp. 10943-10950
  • Chi, Z., Asher, S., UV Raman Determination of the Environment and Solvent Exposure of Tyr and Trp Residues (1998) J. Phys. Chem. B, 102, pp. 9595-9602
  • Kamlet, M.J., Abbound, J.-L.M., Taft, R.W., An examination of linear solvation energy relationships (1981) Prog. Phys. Org. Chem, 13, pp. 485-630
  • Efremov, R.G., Feofanov, A.V., Nabiev, I.R., Effect of hydrophobic environment on the resonance Raman spectra of tryptophan residues in proteins (1992) J. Raman Spectrosc, 23, pp. 69-73
  • Takeuchi, H., Harada, I., Normal Coordinate Analysis of the Indole Ring (1986) Spectrochim. Acta, 42, pp. 1067-1078
  • Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M., Urashima, T., Muller, W.E., Oligosaccharide specificity of galectins: A search by frontal affinity chromatography (2002) Biochim. Biophys. Acta, 1572, pp. 232-254
  • Barrionuevo, P., Beigier-Bompadre, M., Ilarregui, J.M., Toscano, M., Bianco, G.A., Isturiz, M.A., Rabinovich, G.A., A novel function for galectin-1 a the crossroad of innate and a adaptive immunity: Galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic ERK-dependent pathway (2007) J. Immunol, 178, pp. 436-445
  • Pace, K.E., Hahn, H.P., Baum, L.G., Preparation of recombinant human galectin-1 and use in T cell death assays (2003) Methods Enzymol, 363, pp. 499-518
  • Asher, S.A., Bormett, R.W., Chen, X.G., Lemmon, D.H., Cho, N., Peterson, P., Arrigoni, M., Cannon, J., UV Resonance Raman Spectroscopy Using a New CW Laser Source: Convinience and Experimental Simplicity (1993) Appl. Spectrosc, 47, pp. 628-633
  • Case, D.A., Darden, T.A., Cheatman III, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Kollman, P.A., (2004) AMBER 8, , University of California, San Francisco
  • Cheatham, T.E., Cieplak, P., Kollman, P.A., (1999) J. Biomol. Struct. Dyn, 16, pp. 845-862
  • Case, D.A., Cheatham, T.E., Darden, T.A., Gohlke, H., Luo, R., Merz, K.M.J., Onufriev, A., Woods, R.J., The Amber biomolecular simulation programs (2005) J. Comput. Chem, 26, pp. 1668-1688
  • Dudik, J.M., Johnson, C.R., Asher, S.A., UV Resonance Raman studies of acetone, acetamide, and N-methylacetamide: Models for the peptide bond (1985) J. Phys. Chem, 89, pp. 3805-3814
  • Takeuchi, H., Raman Structural Markers of Tryptophan and Histidine Side Chains in Proteins (2003) Biopolymers, 72, pp. 305-317
  • Miura, T., Takeuchi, H., Harada, I., Characterization of individual tryptophan side chains in proteins using Raman spectroscopy and hydrogen-deuterium exchange kinetics (1988) Biochemistry, 27, pp. 88-94
  • Harada, I., Miura, T., Takeuchi, H., Origin of the doublet at 1360 and 1340 cm -1 in the Raman spectra of tryptophan and related compounds (1986) Spectrochim. Acta, 42, pp. 307-312

Citas:

---------- APA ----------
Di Lella, S., Ma, L., Díaz Ricci, J.C., Rabinovich, G.A., Asher, S.A. & Álvarez, R.M.S. (2009) . Critical role of the solvent environment in galectin-1 binding to the disaccharide lactose. Biochemistry, 48(4), 786-791.
http://dx.doi.org/10.1021/bi801855g
---------- CHICAGO ----------
Di Lella, S., Ma, L., Díaz Ricci, J.C., Rabinovich, G.A., Asher, S.A., Álvarez, R.M.S. "Critical role of the solvent environment in galectin-1 binding to the disaccharide lactose" . Biochemistry 48, no. 4 (2009) : 786-791.
http://dx.doi.org/10.1021/bi801855g
---------- MLA ----------
Di Lella, S., Ma, L., Díaz Ricci, J.C., Rabinovich, G.A., Asher, S.A., Álvarez, R.M.S. "Critical role of the solvent environment in galectin-1 binding to the disaccharide lactose" . Biochemistry, vol. 48, no. 4, 2009, pp. 786-791.
http://dx.doi.org/10.1021/bi801855g
---------- VANCOUVER ----------
Di Lella, S., Ma, L., Díaz Ricci, J.C., Rabinovich, G.A., Asher, S.A., Álvarez, R.M.S. Critical role of the solvent environment in galectin-1 binding to the disaccharide lactose. Biochemistry. 2009;48(4):786-791.
http://dx.doi.org/10.1021/bi801855g