Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Since the discovery of soluble guanylate cyclase (sGC) as the mammalian receptor for nitric oxide (NO), numerous studies have been performed in order to understand how sGC transduces the NO signal. However, the structural basis of sGC activation is still not completely elucidated. Spectroscopic and kinetic studies showed that the key step in the activation mechanism was the NO-induced breaking of the iron proximal histidine bond in the so-called 6c-NO to 5c-NO transition. The main breakthrough in the understanding of sGC activation mechanism came, however, from the elucidation of crystal structures for two different prokaryotic heme NO oxygen (HNOX) domains, which are homologues to the sGC heme domain. In this work we present computer simulation results of Thermoanaerobacter tencogensis HNOX that complement these structural studies, yielding molecular explanations to several poorly understood properties of these proteins. Specifically, our results explain the differential ligand binding patterns of the HNOX domains according to the nature of proximal and distal residues. We also show that the natural dynamics of these proteins is intimately related with the proposed conformational dependent activation process, which involves mainly the αFβ1 loop and the αA-αC distal subdomain. The results from the sGC models also support this view and suggest a key role for the αFβ1 loop in the iron proximal histidine bond breaking process and, therefore, in the sGC activation mechanism. © 2008 American Chemical Society.

Registro:

Documento: Artículo
Título:Dynamical characterization of the heme NO oxygen binding (HNOX) domain. Insight into soluble guanylate cyclase allosteric transition
Autor:Capece, L.; Estrin, D.A.; Marti, M.A.
Filiación:Departamento de Quimica Inorganica, Analitica Y Quimica Fisica/INQUIMAE-CONICET, Facultad de Ciencias Exactas Y Naturales, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Palabras clave:Biochemistry; Computational methods; Computer networks; Computer simulation; Mammals; Mechanisms; Nitric oxide; Oxygen; Proteins; Activation mechanisms; Soluble guanylate cyclase; Hemoglobin; guanylate cyclase; hemoprotein; histidine; allosterism; article; computer simulation; enzyme activation; heme nitric oxide oxygen binding; ligand binding; priority journal; protein conformation; protein domain; protein structure; spectroscopy; Thermoanaerobacter; thermoanaerobacter tencogensis; Allosteric Regulation; Animals; Bacterial Proteins; Computer Simulation; Enzyme Activation; Guanylate Cyclase; Heme; Histidine; Humans; Iron; Models, Molecular; Nitric Oxide; Oxygen; Protein Binding; Protein Structure, Secondary; Protein Structure, Tertiary; Signal Transduction; Structure-Activity Relationship; Thermoanaerobacter; Mammalia; Prokaryota; Thermoanaerobacter
Año:2008
Volumen:47
Número:36
Página de inicio:9416
Página de fin:9427
DOI: http://dx.doi.org/10.1021/bi800682k
Título revista:Biochemistry
Título revista abreviado:Biochemistry
ISSN:00062960
CODEN:BICHA
CAS:guanylate cyclase, 9054-75-5; histidine, 645-35-2, 7006-35-1, 71-00-1; Bacterial Proteins; Guanylate Cyclase, EC 4.6.1.2; Heme, 14875-96-8; Histidine, 71-00-1; Iron, 7439-89-6; Nitric Oxide, 10102-43-9; Oxygen, 7782-44-7
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00062960_v47_n36_p9416_Capece

Referencias:

  • Kadish, K.M., Smith, K.M., Guilard, R., (2000) The porphrin handbook, 4. , Academic Press, San Diego
  • Lecomte, J.T.J., Vuletich, D.A., Lesk, A.M., Structural divergence and distant relationships in proteins: Evolution of the globins (2005) Curr. Opin. Struct. Biol, 15, pp. 290-301
  • Hou, S., Larsen, R.W., Boudko, D., Riley, C.W., Karatan, E., Zimmer, M., Ordal, G.W., Alam, M., Myoglobin-like aerotaxis transducers in Archaea and Bacteria (2000) Nature, 403, pp. 540-544
  • Gilles-Gonzalez, M.A., Ditta, G.S., Helinski, D.R., A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti (1991) Nature, 350, pp. 170-172
  • Roberts, G.P., Kerby, R.L., Youn, H., Conrad, M., CooA, a paradigm for gas sensing regulatory proteins (2005) J. Inorg. Biochem, 99, pp. 280-292
  • Poulos, T.L., Soluble guanylate cyclase (2006) Curr. Opin. Struct. Biol, 16, pp. 736-743
  • Denninger, J.W., Marletta, M.A., Guanylate cyclase and the •NO/cGMP signaling pathway (1999) Biochim. Biophys. Acta, 1411, pp. 334-350
  • Moncada, S., Palmer, R.M.J., Higgs, E.A., Nitric oxide: Physiology, pathophysiology, and pharmacology (1991) Pharmacol. Rev, 43, pp. 109-142
  • Iyer, L.M., Anantharaman, V., Aravind, L., Ancient conserved domains shared by animal soluble guanylyl cyclases and bacterial signaling proteins (2003) BMC Genomics, 4
  • Schmidt, P.M., Schramm, M., Schroder, H., Wunder, F., Stasch, J.P., Identification of residues crucially involved in the binding of the heme moiety of soluble guanylate cyclase (2004) J. Biol. Chem, 279, pp. 3025-3032
  • Nioche, P., Berka, V., Vipond, J., Minton, N., Tsai, A.L., Raman, C.S., Femtomolar sensitivity of a NO sensor from Clostridium botulinum (2004) Science, 306, pp. 1550-1553
  • Pellicena, P., Karow, D.S., Boon, E.M., Marletta, M.A., Kuriyan, J., Crystal structure of an oxygen-binding heme domain related to soluble guanylate cyclases (2004) Proc. Natl. Acad. Sci. U.S.A, 101, pp. 12854-12859
  • Ma, X., Sayed, N., Beuve, A., van den Akker, F., NO and CO differentially activate soluble guanylyl cyclase via a heme pivot-bend mechanism (2007) EMBO J, 26, pp. 578-588
  • Karow, D.S., Pan, D., Davis, J.H., Behrends, S., Mathies, R.A., Marletta, M.A., Characterization of functional heme domains from soluble guanylate cyclase (2005) Biochemistry, 44, pp. 16266-16274
  • Boon, E.M., Huang, S.H., Marletta, M.A., A molecular basis for NO selectivity in soluble guanylate cyclase (2005) Nat. Chem. Biol, 1, pp. 53-59
  • Karow, D.S., Pan, D., Tran, R., Pellicena, P., Presley, A., Mathies, R.A., Marletta, M.A., Spectroscopic characterization of the soluble guanylate cyclase-like heme domains from Vibrio cholerae and Thermoanaerobacter tengcongensis (2004) Biochemistry, 43, pp. 10203-10211
  • Rothkegel, C., Schmidt, P.M., Stoll, F., Schroder, H., Schmidt, H.H.H.W., Stasch, J.P., Identification of residues crucially involved in soluble guanylate cyclase activation (2006) FEBS Lett, 580, pp. 4205-4213
  • Scheidt, W.R., Ellison, M.K., The synthetic and structural chemistry of heme derivatives with nitric oxide ligands (1999) Acc. Chem. Res, 32, pp. 350-359
  • Bikiel, D.E., Boechi, L., Capece, L., Crespo, A., De Biase, P.M., Di Lella, S., Gonzalez Lebrero, M.C., Estrin, D.A., Modeling heme proteins using atomistic simulations (2006) Phys. Chem. Chem. Phys, 8, pp. 5611-5628
  • Marti, M.A., Crespo, A., Capece, L., Boechi, L., Bikiel, D.E., Scherlis, D.A., Estrin, D.A., Dioxygen affinity in heme proteins investigated by computer simulation (2006) J. Inorg. Biochem, 100, pp. 761-770
  • Marti, M.A., Capece, L., Crespo, A., Doctorovich, F., Estrin, D.A., Nitric oxide interaction with cytochrome c′ and its relevance to guanylate cyclase. Why does the iron histidine bond break? (2005) J. Am. Chem. Soc, 127, pp. 7721-7728
  • Marti, M.A., Scherlis, D.A., Doctorovich, F.A., Ordejon, P., Estrin, D.A., Modulation of the NO trans effect in heme proteins: Implications for the activation of soluble guanylate cyclase (2003) J. Biol. Inorg. Chem, 8, pp. 595-600
  • Andrew, C.R.G.S.J., Lawson, D.M., Eady, R.R., Resonance Raman studies of cytochrome c′ support the binding of NO and CO to opposite sides of the heme: Implications for ligand discrimination in heme-based sensors (2001) Biochemistry, 40, pp. 4115-4122
  • Schelvis, J.P.M.S., Cerda, J.F., Garavito, R.M., Babcock, G.T., Interaction of nitric oxide with prostaglandin endoperoxide H synthase-1: Implications for Fe-His bond cleavage in heme proteins (2000) J. Phys. Chem. B, 104, pp. 10844-10850
  • Xu, C., Ibrahim, M., Spiro, T.G., DFT analysis of axial and equatorial effects on heme-CO vibrational modes: Applications to CooA and H-NOX heme sensor proteins (2008) Biochemistry, 47, pp. 2379-2387
  • Phillips Jr., G.N., Teodora, M.L., Li, T., Smith, B., Olson, J.S., Bound CO is a molecular probe of electrostatic potential in the distal pocket of myoglobin (1999) J. Phys. Chem. B, 103, pp. 8817-8829
  • Alcantara, R.E., Xu, C., Spiro, T.G., Guallar, V., A quantum-chemical picture of hemoglobin affinity (2007) Proc. Natl. Acad. Sci. U.S.A, 104, pp. 18451-18455
  • Nadra, A.D., Martí, M.A., Pesce, A., Bolognesi, M., Estrin, D.A., Exploring the molecular basis of heme coordination in human neuroglobin (2008) Proteins: Struct., Funct., Bioinf. 71, pp. 695-705
  • Tama, F., Sanejouand, Y.H., Conformational change of proteins arising from normal mode calculations (2001) Protein Eng, 14, pp. 1-6
  • Fiser, A., Sali, A., MODELLER: Generation and refinement of homology-based protein structure models (2003) Methods Enzymol, 374, pp. 461-491
  • Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A., Haak, J.R., Molecular dynamics with coupling to an external bath (1984) J. Chem. Phys, 81, pp. 3684-3690
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., Comparison of multiple amber force fields and development of improved protein backbone parameters (2006) Proteins: Struct., Funct., Genet, 65, pp. 712-725
  • Bidon-Chanal, A., Marti, M.A., Crespo, A., Milani, M., Orozco, M., Bolognesi, M., Luque, F.J., Estrin, D.A., Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N (2006) Proteins. Struct., Funct,. Bioinf
  • Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham Iii, T.E., DeBolt, S., Ferguson, D., Kollman, P., AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules (1995) Comput. Phys. Commun, 91, pp. 1-41
  • Amadei, A., Linssen, A.B.M., Berendsen, H.J.C., Essential dynamics of proteins (1993) Proteins. Struct. Func. Gen, 17, pp. 412-425
  • Amadei, A., Ceruso, M.A., Di Nola, A., On the convergence of the conformational coordinates basis set obtained by the essential dynamics analysis of proteins' molecular dynamics simulations (1999) Proteins: Struct., Funct., Genet, 36
  • Amadei, A., De Groot, B.L., Ceruso, M.A., Paci, M., Di Nola, A., Berendsen, H.J.C., A kinetic model for the internal motions of proteins: Diffusion between multiple harmonic wells (1999) Proteins: Struct., Funct., Genet, 35
  • Chau, P.L., Van Aalten, D.M.F., Bywater, R.P., Findlay, J.B.C., Functional concerted motions in the bovine serum retinol-binding protein J. Comput.-Aided Mol. Des. 13
  • De Groot, B.L., Vriend, G., Berendsen, H.J.C., Conformational changes in the chaperonin GroEL: New insights into the allosteric mechanism (1999) J. Mol. Biol, p. 286
  • Kitao, A., Go, N., Investigating protein dynamics in collective coordinate space (1999) Curr. Opin. Struct. Biol, 9
  • Crespo, A., Scherlis, D.A., Marti, M.A., Ordejón, P., Roitberg, A.E., Estrin, D.A., A DFT-based QM-MM approach designed for the treatment of large molecular systems: Application to chorismate mutase (2003) J. Phys. Chem. B, 107, pp. 13728-13736
  • Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett, 77, pp. 3865-3868
  • Marti, M.A., Crespo, A., Bari, S.E., Doctorovich, F.A., Estrin, D.A., QM-MM study of nitrite reduction by nitrite reductase of Pseudomonas aeruginosa (2004) J. Phys. Chem. B, 108, pp. 18073-18080
  • Crespo, A., Marti, M.A., Kalko, S.G., Morreale, A., Orozco, M., Gelpi, J.L., Luque, F.J., Estrin, D.A., Theoretical study of the truncated hemoglobin HbN: Exploring the molecular basis of the NO detoxification mechanism (2005) J. Am. Chem. Soc, 127, pp. 4433-4444
  • Jarzynski, C., Nonequilibrium equality for free energy differences (1997) Phys. Rev. Lett, 78, pp. 2690-2693
  • Hummer, G., Szabo, A., Free energy reconstruction from nonequilibrium single-molecule pulling experiments (2001) Proc. Natl. Acad. Sci. U.S.A, 98, pp. 3658-3661
  • Park, S., Schulten, K., Calculating potentials of mean force from steered molecular dynamics simulations (2004) J. Chem. Phys, 120, pp. 5946-5961
  • Xiong, H., Crespo, A., Marti, M., Estrin, D., Roitberg, A.E., Free energy calculations with non-equilibrium methods: Applications of the Jarzynski relationship (2006) Theor. Chem. Acc, 116, pp. 338-346
  • Meuwly, M., Becker, O.M., Stote, R., Karplus, M., NO rebinding to myoglobin: A reactive molecular dynamics study (2002) Biophys. Chem, 98

Citas:

---------- APA ----------
Capece, L., Estrin, D.A. & Marti, M.A. (2008) . Dynamical characterization of the heme NO oxygen binding (HNOX) domain. Insight into soluble guanylate cyclase allosteric transition. Biochemistry, 47(36), 9416-9427.
http://dx.doi.org/10.1021/bi800682k
---------- CHICAGO ----------
Capece, L., Estrin, D.A., Marti, M.A. "Dynamical characterization of the heme NO oxygen binding (HNOX) domain. Insight into soluble guanylate cyclase allosteric transition" . Biochemistry 47, no. 36 (2008) : 9416-9427.
http://dx.doi.org/10.1021/bi800682k
---------- MLA ----------
Capece, L., Estrin, D.A., Marti, M.A. "Dynamical characterization of the heme NO oxygen binding (HNOX) domain. Insight into soluble guanylate cyclase allosteric transition" . Biochemistry, vol. 47, no. 36, 2008, pp. 9416-9427.
http://dx.doi.org/10.1021/bi800682k
---------- VANCOUVER ----------
Capece, L., Estrin, D.A., Marti, M.A. Dynamical characterization of the heme NO oxygen binding (HNOX) domain. Insight into soluble guanylate cyclase allosteric transition. Biochemistry. 2008;47(36):9416-9427.
http://dx.doi.org/10.1021/bi800682k