Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Glucocorticoids (GCs) are steroid hormones widely used as coadjuvants in the treatment of solid tumors due to their anti-inflammatory effects. However, evidence show that they also may induce chemotherapy resistance, probably through their capacity to inhibit apoptosis triggered by antineoplastic drugs. GCs exert their action by regulating gene expression throughout two main mechanisms: transactivation, where the activated glucocorticoid receptor (GR) directly binds to certain genes; and transrepression, an indirect mechanism by which GR regulates other transcription factors activities. Recently, our group has shown that the rigid steroid 21-hydroxy-6,19-epoxyprogesterone (21OH-6,19OP) is a selective GR ligand that behaves as an agonist in transrepression assays and as an antagonist in transactivation ones. Here, we have evaluated the anti-inflammatory activity of 21OH-6,19OP, its capacity to generate chemoresistance, as well as its mechanism of action. We found that 21OH-6,19OP inhibits nitrites formation and the inducible nitric oxide synthase (Nos-2) expression in macrophages. It also blocks the expression of both cyclooxygenase-2 (COX-2) and interleukin-8 (IL-8) triggered by tumor necrosis factor-alpha (TNF-α) in epithelial lung cancer cells. However, contrary to dexamethasone (DEX), 21OH-6,19OP neither reverts the paclitaxel-induced caspase-3 activity, nor induces the anti-apoptotic Bcl-XL gene expression in murine tumor mammary epithelial cells; and importantly, it lacks GCs-associated chemoresistance in a mouse mammary tumor model. Together, our findings suggest that 21OH-6,19OP behaves as a dissociated GC that keeps anti-inflammatory action without affecting the apoptotic process triggered by chemotherapeutic drugs. For these reasons, this steroid may become a putative novel coadjuvant in the treatment of breast cancer. © 2014 Elsevier Inc.

Registro:

Documento: Artículo
Título:The rigid steroid 21-hydroxy-6,19-epoxyprogesterone (21OH-6,19OP) is a dissociated glucocorticoid receptor modulator potentially useful as a novel coadjuvant in breast cancer chemotherapy
Autor:Orqueda, A.J.; Dansey, M.V.; Español, A.; Veleiro, A.S.; Bal De Kier Joffé, E.; Sales, M.E.; Burton, G.; Pecci, A.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (C1428EGA), Buenos Aires, Argentina
Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (C1428EGA), Buenos Aires, Argentina
IFIBYNE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (C1428EGA), Buenos Aires, Argentina
UMYMFOR (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
CEFyBo (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
Área Investigación Instituto de Oncología Ángel H. Roffo, Universidad de Buenos Aires, Facultad de Medicina, Paraguay 2155, C1121AB, Buenos Aires, Argentina
Palabras clave:21OH-6,19-epoxyprogesterone; Cyclooxygenase-2; Glucocorticoid receptor; Mitogen activated protein kinase phosphatase-1; Paclitaxel; 21 hydroxy 6,19 epoxyprogesterone; antiinflammatory agent; antineoplastic agent; caspase 3; cyclooxygenase 2; dexamethasone; glucocorticoid receptor; inducible nitric oxide synthase; interleukin 8; mitogen activated protein kinase; paclitaxel; protein bcl xl; tumor necrosis factor alpha; unclassified drug; animal cell; animal experiment; animal model; antiinflammatory activity; article; breast cancer; breast cell; breast epithelium; cancer chemotherapy; cell viability; controlled study; female; histology; human; human cell; metastasis; mouse; nonhuman; peritoneum macrophage; priority journal; protein expression; transactivation; tumor growth; tumor volume; 21OH-6,19-epoxyprogesterone; Cyclooxygenase-2; Dexamethasone (PubChem CID: 5743); Glucocorticoid receptor; Mitogen activated protein kinase phosphatase-1; Paclitaxel; Paclitaxel (PubChem CID: 36314); Animals; Anti-Inflammatory Agents; Antineoplastic Agents, Hormonal; Antineoplastic Combined Chemotherapy Protocols; Breast Neoplasms; Cell Line, Transformed; Cell Line, Tumor; Cell Survival; Cells, Cultured; Female; Gene Expression Regulation, Neoplastic; Humans; Lung Neoplasms; Macrophages, Peritoneal; Mice; Mice, Inbred BALB C; Neoplasm Proteins; Neoplasm Transplantation; Progesterone; Random Allocation; Receptors, Glucocorticoid; Specific Pathogen-Free Organisms
Año:2014
Volumen:89
Número:4
Página de inicio:526
Página de fin:535
DOI: http://dx.doi.org/10.1016/j.bcp.2014.04.006
Título revista:Biochemical Pharmacology
Título revista abreviado:Biochem. Pharmacol.
ISSN:00062952
CODEN:BCPCA
CAS:caspase 3, 169592-56-7; dexamethasone, 50-02-2; inducible nitric oxide synthase, 501433-35-8; interleukin 8, 114308-91-7; mitogen activated protein kinase, 142243-02-5; paclitaxel, 33069-62-4; protein bcl xl, 151033-38-4
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00062952_v89_n4_p526_Orqueda

Referencias:

  • Zhang, C., Beckermann, B., Kallifatidis, G., Liu, Z., Rittgen, W., Edler, L., Corticosteroids induce chemotherapy resistance in the majority of tumour cells from bone, brain, breast, cervix, melanoma and neuroblastoma (2006) Int J Oncol, 29, pp. 1295-1301
  • Sui, M., Chen, F., Chen, Z., Fan, W., Glucocorticoids interfere with therapeutic efficacy of paclitaxel against human breast and ovarian xenograft tumors (2006) International Journal of Cancer, 119 (3), pp. 712-717. , DOI 10.1002/ijc.21743
  • Meyer, S., Eden, T., Kalirai, H., Dexamethasone protects against Cisplatin-induced activation of the mitochondrial apoptotic pathway in human osteosarcoma cells (2006) Cancer Biol Ther, 5, pp. 915-920
  • Zhang, C., Wenger, T., Mattern, J., Ilea, S., Frey, C., Gutwein, P., Altevogt, P., Herr, I., Clinical and mechanistic aspects of glucocorticoid-induced chemotherapy resistance in the majority of solid tumors (2007) Cancer Biology and Therapy, 6 (2), pp. 278-287. , http://www.landesbioscience.com/journals/cbt/article/zhang6-2-2.pdf
  • Cole, T.J., Blendy, J.A., Monaghan, A.P., Krieglstein, K., Schmid, W., Aguzzi, A., Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation (1995) Genes Dev, 9, pp. 1608-1621
  • Finotto, S., Krieglstein, K., Schober, A., Deimling, F., Lindner, K., Bruhl, B., Beier, K., Unsicker, K., Analysis of mice carrying targeted mutations of the glucocorticoid receptor gene argues against an essential role of glucocorticoid signalling for generating adrenal chromaffin cells (1999) Development, 126 (13), pp. 2935-2944
  • Hollenberg, S.M., Weinberger, C., Ong, E.S., Primary structure and expression of a functional human glucocorticoid receptor cDNA (1985) Nature, 318 (6047), pp. 635-641. , DOI 10.1038/318635a0
  • Moutsatsou, P., Papavassiliou, A.G., The glucocorticoid receptor signalling in breast cancer (2008) J Cell Mol Med, 12, pp. 145-163
  • Mandal, M., Olson, D.J., Sharma, T., Vadlamudi, R.K., Kumar, R., Butyric acid induces apoptosis by up-regulating Bax expression via stimulation of the c-Jun N-terminal kinase/activation protein-1 pathway in human colon cancer cells (2001) Gastroenterology, 120 (1), pp. 71-78
  • Necela, B.M., Cidlowski, J.A., Mechanisms of glucocorticoid receptor action in noninflammatory and inflammatory cells (2004) Proc Am Thorac Soc, 1, pp. 239-246
  • Clark, A.R., Belvisi, M.G., Maps and legends: The quest for dissociated ligands of the glucocorticoid receptor (2012) Pharmacol Ther, 134, pp. 54-67
  • Necela, B.M., Cidlowski, J.A., Crystallization of the human glucocorticoid receptor ligand binding domain: A step towards selective glucocorticoids (2003) Trends in Pharmacological Sciences, 24 (2), pp. 58-61. , DOI 10.1016/S0165-6147(02)00046-9, PII S0165614702000469
  • De Bosscher, K., Haegeman, G., Minireview: Latest perspectives on antiinflammatory actions of glucocorticoids (2009) Mol Endocrinol, 23, pp. 281-291
  • Vicent, G.P., Monteserin, M.C., Veleiro, A.S., Burton, G., Lantos, C.P., Galigniana, M.D., 21-hydroxy-6,19-oxidoprogesterone: A novel synthetic steroid with specific antiglucocorticoid properties in the rat (1997) Molecular Pharmacology, 52 (4), pp. 749-753
  • Presman, D.M., Alvarez, L.D., Levi, V., Eduardo, S., Digman, M.A., Marti, M.A., Insights on glucocorticoid receptor activity modulation through the binding of rigid steroids (2010) PLoS One, 5, p. 13279
  • Alvarez, L.D., Marti, M.A., Veleiro, A.S., Presman, D.M., Estrin, D.A., Pecci, A., Burton, G., Exploring the molecular basis of action of the passive antiglucocorticoid 21-hydroxy-6,19-epoxyprogesterone (2008) Journal of Medicinal Chemistry, 51 (5), pp. 1352-1360. , DOI 10.1021/jm800007w
  • Alvarez Ld, L.D., Martí, M.A., Veleiro, A.S., Misico, R.I., Estrin, D.A., Pecci, A., Hemisuccinate of 21-hydroxy-6,19-epoxyprogesterone: A tissue-specific modulator of the glucocorticoid receptor (2008) ChemMedChem, 3, pp. 1869-1877
  • Lippman, M., Bolan, G., Huff, K., The effects of androgens and antiandrogens on hormone-responsive human breast cancer in long-term tissue culture (1976) Cancer Res, 36, pp. 4610-4618
  • Burton, G., Lantos, C., Veleiro, A., (2006) Method for the Preparation of 21-hydroxy-6,19-oxidoprogesterone (21OH-6,19OP), , U.S. Patent ed. 7,071,328
  • Urtreger, A.J., Aguirre Ghiso, J.A., Werbajh, S.E., Puricelli, L.I., Muro, A.F., Bal De Kier Joffe, E., Involvement of fibronectin in the regulation of urokinase production and binding in murine mammary tumor cells (1999) International Journal of Cancer, 84 (5), pp. 748-753
  • Pang, D., Kocherginsky, M., Krausz, T., Kim, S.Y., Conzen, S.D., Dexamethasone decreases xenograft response to Paclitaxel through inhibition of tumor cell apoptosis (2006) Cancer Biol Ther, 5, pp. 933-940
  • Hoijman, E., Rocha-Viegas, L., Kalko, S.G., Rubinstein, N., Morales-Ruiz, M., Joffe, E.B., Glucocorticoid alternative effects on proliferating and differentiated mammary epithelium are associated to opposite regulation of cell-cycle inhibitor expression (2012) J Cell Physiol, 227, pp. 1721-1730
  • Molinero, L.L., Fuertes, M.B., Girart, M.V., Fainboim, L., Rabinovich, G.A., Costas, M.A., Zwirner, N.W., NF-κB regulates expression of the MHC class I-related chain A gene in activated T lymphocytes (2004) Journal of Immunology, 173 (9), pp. 5583-5590
  • Tanos, T., Marinissen, M.J., Leskow, F.C., Hochbaum, D., Martinetto, H., Gutkind, J.S., Coso, O.A., Phosphorylation of c-Fos by members of the p38 MAPK family: Role in the AP-1 response to UV light (2005) Journal of Biological Chemistry, 280 (19), pp. 18842-18852. , DOI 10.1074/jbc.M500620200
  • Romorini, L., Coso, O.A., Pecci, A., Bcl-XL mediates epidermal growth factor dependent cell survival in HC11 mammary epithelial cells (2009) Biochim Biophys Acta, 1793, pp. 496-505
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254
  • Cymeryng, C.B., Dada, L.A., Colonna, C., Mendez, C.F., Podesta, E.J., Effects of L-arginine in rat adrenal cells: Involvement of nitric oxide synthase (1999) Endocrinology, 140 (7), pp. 2962-2967
  • Moncada, S., Higgs, E.A., Endogenous nitric oxide: Physiology, pathology and clinical relevance (1991) Eur J Clin Invest, 21, pp. 361-374
  • Tsatsanis, C., Androulidaki, A., Venihaki, M., Margioris, A.N., Signalling networks regulating cyclooxygenase-2 (2006) International Journal of Biochemistry and Cell Biology, 38 (10), pp. 1654-1661. , DOI 10.1016/j.biocel.2006.03.021, PII S1357272506001257
  • Luster, M.I., Simeonova, P.P., Asbestos induces inflammatory cytokines in the lung through redox sensitive transcription factors (1998) Toxicology Letters, 102-103, pp. 271-275. , DOI 10.1016/S0378-4274(98)00321-X, PII S037842749800321X
  • Luster, A.D., Mechanisms of disease: Chemokines - Chemotactic cytokines that mediate inflammation (1998) New England Journal of Medicine, 338 (7), pp. 436-445. , DOI 10.1056/NEJM199802123380706
  • D'Acquisto, F., Iuvone, T., Rombola, L., Sautebin, L., Di Rosa, M., Carnuccio, R., Involvement of NF-κB in the regulation of cyclooxygenase-2 protein expression in LPS-stimulated J774 macrophages (1997) FEBS Letters, 418 (1-2), pp. 175-178. , DOI 10.1016/S0014-5793(97)01377-X, PII S001457939701377X
  • Mukaida, N., Morita, M., Ishikawa, Y., Rice, N., Okamoto, S., Kasahara, T., Novel mechanism of glucocorticoid-mediated gene repression. Nuclear factor-kappa B is target for glucocorticoid-mediated interleukin 8 gene repression (1994) J Biol Chem, 269, pp. 13289-13295
  • Subbaramaiah, K., Norton, L., Gerald, W., Dannenberg, A.J., Cyclooxygenase-2 is overexpressed in HER-2/neu-positive breast cancer: Evidence for involvement of AP-1 and PEA3 (2002) Journal of Biological Chemistry, 277 (21), pp. 18649-18657. , DOI 10.1074/jbc.M111415200
  • King, E.M., Holden, N.S., Gong, W., Rider, C.F., Newton, R., Inhibition of NF-kappaB-dependent transcription by MKP-1: Transcriptional repression by glucocorticoids occurring via p38 MAPK (2009) J Biol Chem, 284, pp. 26803-26815
  • Kassel, O., Sancono, A., Kratzschmar, J., Kreft, B., Stassen, M., Cato, A.C.B., Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1 (2001) EMBO Journal, 20 (24), pp. 7108-7116. , DOI 10.1093/emboj/20.24.7108
  • Vollmer, T.R., Stockhausen, A., Zhang, J.Z., Anti-inflammatory effects of mapracorat, a novel selective glucocorticoid receptor agonist, is partially mediated by MAP kinase phosphatase-1 (MKP-1) (2012) J Biol Chem, 287, pp. 35212-35221
  • Joanny, E., Ding, Q., Gong, L., Kong, P., Saklatvala, J., Clark, A.R., Anti-inflammatory effects of selective glucocorticoid receptor modulators are partially dependent on up-regulation of dual specificity phosphatase 1 (2012) Br J Pharmacol, 165, pp. 1124-1136
  • Shipp, L.E., Lee, J.V., Yu, C.Y., Pufall, M., Zhang, P., Scott, D.K., Transcriptional regulation of human dual specificity protein phosphatase 1 (DUSP1) gene by glucocorticoids (2010) PLoS One, 5, p. 13754
  • Walton, K.D., Wagner, K.-U., Rucker III, E.B., Shillingford, J.M., Miyoshi, K., Hennighausen, L., Conditional deletion of the bcl-x gene from mouse mammary epithelium results in accelerated apoptosis during involution but does not compromise cell function during lactation (2001) Mechanisms of Development, 109 (2), pp. 281-293. , DOI 10.1016/S0925-4773(01)00549-4, PII S0925477301005494
  • Zhang, J.Z., Cavet, M.E., Vandermeid, K.R., Salvador-Silva, M., Lopez, F.J., Ward, K.W., BOL-303242-X, a novel selective glucocorticoid receptor agonist, with full anti-inflammatory properties in human ocular cells (2009) Mol Vis, 15, pp. 2606-2616
  • Chivers, J.E., Gong, W., King, E.M., Seybold, J., Mak, J.C., Donnelly, L.E., Holden, N.S., Newton, R., Analysis of the dissociated steroid RU24858 does not exclude a role for inducible genes in the anti-inflammatory actions of glucocorticoids (2006) Molecular Pharmacology, 70 (6), pp. 2084-2095. , http://molpharm.aspetjournals.org/cgi/reprint/70/6/2084, DOI 10.1124/mol.106.025841
  • Korhonen, R., Lahti, A., Hamalainen, M., Kankaanranta, H., Moilanen, E., Dexamethasone inhibits inducible nitric-oxide synthase expression and nitric oxide production by destabilizing mRNA in lipopolysaccharide-treated macrophages (2002) Molecular Pharmacology, 62 (3), pp. 698-704. , DOI 10.1124/mol.62.3.698
  • Baudy, A.R., Reeves, E.K., Damsker, J.M., Heier, C., Garvin, L.M., Dillingham, B.C., Delta-9,11 modification of glucocorticoids dissociates nuclear factor-kappaB inhibitory efficacy from glucocorticoid response element-associated side effects (2012) J Pharmacol Exp Ther, 343, pp. 225-232
  • Walker, G., Pfeilschifter, J., Otten, U., Kunz, D., Proteolytic cleavage of inducible nitric oxide synthase (iNOS) by calpain I (2001) Biochimica et Biophysica Acta - General Subjects, 1568 (3), pp. 216-224. , DOI 10.1016/S0304-4165(01)00223-9, PII S0304416501002239
  • Walker, G., Pfeilschifter, J., Kunz, D., Mechanisms of suppression of inducible nitric-oxide synthase (iNOS) expression in interferon (IFN)-γ-stimulated RAW 264.7 cells by dexamethasone. Evidence for glucocorticoid-induced degradation of iNOS protein by calpain as a key step in post-transcriptional regulation (1997) Journal of Biological Chemistry, 272 (26), pp. 16679-16687. , DOI 10.1074/jbc.272.26.16679
  • Cho, I.J., Kim, S.G., A novel mitogen-activated protein kinase phosphatase-1 and glucocorticoid receptor (GR) interacting protein-1-dependent combinatorial mechanism of gene transrepression by GR (2009) Mol Endocrinol, 23, pp. 86-99
  • Abraham, S.M., Lawrence, T., Kleiman, A., Warden, P., Medghalchi, M., Tuckermann, J., Saklatvala, J., Clark, A.R., Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1 (2006) Journal of Experimental Medicine, 203 (8), pp. 1883-1889. , http://www.jem.org/cgi/reprint/203/8/1883, DOI 10.1084/jem.20060336
  • Smoak, K., Cidlowski, J.A., Glucocorticoids regulate tristetraprolin synthesis and posttranscriptionally regulate tumor necrosis factor alpha inflammatory signaling (2006) Molecular and Cellular Biology, 26 (23), pp. 9126-9135. , DOI 10.1128/MCB.00679-06
  • Newton, R., Holden, N.S., Catley, M.C., Oyelusi, W., Leigh, R., Proud, D., Barnes, P.J., Repression of inflammatory gene expression in human pulmonary epithelial cells by small-molecule IκB kinase inhibitors (2007) Journal of Pharmacology and Experimental Therapeutics, 321 (2), pp. 734-742. , http://jpet.aspetjournals.org/cgi/reprint/321/2/734, DOI 10.1124/jpet.106.118125
  • De Bosscher, K., Haegeman, G., Elewaut, D., Targeting inflammation using selective glucocorticoid receptor modulators (2010) Curr Opin Pharmacol, 10, pp. 497-504
  • Schacke, H., Rehwinkel, H., Asadullah, K., Dissociated glucocorticoid receptor ligands: Compounds with an improved therapeutic index (2005) Current Opinion in Investigational Drugs, 6 (5), pp. 503-507
  • Glass, C.K., Saijo, K., Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells (2010) Nat Rev Immunol, 10, pp. 365-376
  • Frijters, R., Fleuren, W., Toonen, E.J., Tuckermann, J.P., Reichardt, H.M., Van Der Maaden, H., Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor (2010) BMC Genom, 11, p. 359
  • Kleiman, A., Hubner, S., Rodriguez Parkitna, J.M., Neumann, A., Hofer, S., Weigand, M.A., Glucocorticoid receptor dimerization is required for survival in septic shock via suppression of interleukin-1 in macrophages (2012) FASEB J, 26, pp. 722-729
  • Ehrchen, J., Steinmuller, L., Barczyk, K., Tenbrock, K., Nacken, W., Eisenacher, M., Nordhues, U., Roth, J., Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes (2007) Blood, 109 (3), pp. 1265-1274. , http://www.bloodjournal.org/cgi/reprint/109/3/1265, DOI 10.1182/blood-2006-02-001115
  • Clark, A.R., MAP kinase phosphatase 1: A novel mediator of biological effects of glucocorticoids? (2003) Journal of Endocrinology, 178 (1), pp. 5-12. , DOI 10.1677/joe.0.1780005
  • Johansson-Haque, K., Palanichamy, E., Okret, S., Stimulation of MAPK-phosphatase 1 gene expression by glucocorticoids occurs through a tethering mechanism involving C/EBP (2008) J Mol Endocrinol, 41, pp. 239-249
  • Vandevyver, S., Dejager, L., Van Bogaert, T., Kleyman, A., Liu, Y., Tuckermann, J., Glucocorticoid receptor dimerization induces MKP1 to protect against TNF-induced inflammation (2012) J Clin Invest, 122, pp. 2130-2140
  • Presman, D.M., Ogara, M.F., Stortz, M., Alvarez, L.D., Pooley, J.R., Schiltz, R.L., Live cell imaging unveils multiple domain requirements for in vivo dimerization of the glucocorticoid receptor (2014) PLoS Biol, 12, p. 1001813
  • Schorr, K., Furth, P.A., Induction of bcl-xL expression in mammary epithelial cells is glucocorticoid-dependent but not signal transducer and activator of transcription 5-dependent (2000) Cancer Res, 60, pp. 5950-5953
  • Viegas, L.R., Vicent, G.P., Baranao, J.L., Beato, M., Pecci, A., Steroid Hormones Induce bcl-X Gene Expression through Direct Activation of Distal Promoter P4 (2004) Journal of Biological Chemistry, 279 (11), pp. 9831-9839. , DOI 10.1074/jbc.M312402200
  • Feng, Z., Marti, A., Jehn, B., Altermatt, H.J., Chicaiza, G., Jaggi, R., Glucocorticoid and progesterone inhibit involution and programmed cell death in the mouse mammary gland (1995) J Cell Biol, 131, pp. 1095-1103
  • Marti, A., Ritter, P.M., Jager, R., Lazar, H., Baltzer, A., Schenkel, J., Declercq, W., Jaggi, R., Mouse mammary gland involution is associated with cytochrome c release and caspase activation (2001) Mechanisms of Development, 104 (1-2), pp. 89-98. , DOI 10.1016/S0925-4773(01)00381-1, PII S0925477301003811
  • Wu, W., Chaudhuri, S., Brickley, D.R., Pang, D., Karrison, T., Conzen, S.D., Microarray Analysis Reveals Glucocorticoid-Regulated Survival Genes That Are Associated with Inhibition of Apoptosis in Breast Epithelial Cells (2004) Cancer Research, 64 (5), pp. 1757-1764. , DOI 10.1158/0008-5472.CAN-03-2546
  • Heitzer, M.D., DeFranco, D.B., Mechanism of action of Hic-5/androgen receptor activator 55, a LIM domain-containing nuclear receptor coactivator (2006) Molecular Endocrinology, 20 (1), pp. 56-64. , http://mend.endojournals.org/cgi/reprint/20/1/56, DOI 10.1210/me.2005-0065
  • Jiang, W., Zhu, Z., Bhatia, N., Agarwal, R., Thompson, H.J., Mechanisms of energy restriction: Effects of corticosterone on cell growth, cell cycle machinery, and apoptosis (2002) Cancer Research, 62 (18), pp. 5280-5287
  • Rogatsky, I., Trowbridge, J.M., Garabedian, M.J., Glucocorticoid receptor-mediated cell cycle arrest is achieved through distinct cell-specific transcriptional regulatory mechanisms (1997) Molecular and Cellular Biology, 17 (6), pp. 3181-3193
  • Smith, C.L., O'Malley, B.W., Coregulator Function: A Key to Understanding Tissue Specificity of Selective Receptor Modulators (2004) Endocrine Reviews, 25 (1), pp. 45-71. , DOI 10.1210/er.2003-0023

Citas:

---------- APA ----------
Orqueda, A.J., Dansey, M.V., Español, A., Veleiro, A.S., Bal De Kier Joffé, E., Sales, M.E., Burton, G.,..., Pecci, A. (2014) . The rigid steroid 21-hydroxy-6,19-epoxyprogesterone (21OH-6,19OP) is a dissociated glucocorticoid receptor modulator potentially useful as a novel coadjuvant in breast cancer chemotherapy. Biochemical Pharmacology, 89(4), 526-535.
http://dx.doi.org/10.1016/j.bcp.2014.04.006
---------- CHICAGO ----------
Orqueda, A.J., Dansey, M.V., Español, A., Veleiro, A.S., Bal De Kier Joffé, E., Sales, M.E., et al. "The rigid steroid 21-hydroxy-6,19-epoxyprogesterone (21OH-6,19OP) is a dissociated glucocorticoid receptor modulator potentially useful as a novel coadjuvant in breast cancer chemotherapy" . Biochemical Pharmacology 89, no. 4 (2014) : 526-535.
http://dx.doi.org/10.1016/j.bcp.2014.04.006
---------- MLA ----------
Orqueda, A.J., Dansey, M.V., Español, A., Veleiro, A.S., Bal De Kier Joffé, E., Sales, M.E., et al. "The rigid steroid 21-hydroxy-6,19-epoxyprogesterone (21OH-6,19OP) is a dissociated glucocorticoid receptor modulator potentially useful as a novel coadjuvant in breast cancer chemotherapy" . Biochemical Pharmacology, vol. 89, no. 4, 2014, pp. 526-535.
http://dx.doi.org/10.1016/j.bcp.2014.04.006
---------- VANCOUVER ----------
Orqueda, A.J., Dansey, M.V., Español, A., Veleiro, A.S., Bal De Kier Joffé, E., Sales, M.E., et al. The rigid steroid 21-hydroxy-6,19-epoxyprogesterone (21OH-6,19OP) is a dissociated glucocorticoid receptor modulator potentially useful as a novel coadjuvant in breast cancer chemotherapy. Biochem. Pharmacol. 2014;89(4):526-535.
http://dx.doi.org/10.1016/j.bcp.2014.04.006