Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Mechanosensory hair cells of the organ of Corti transmit information regarding sound to the central nervous system by way of peripheral afferent neurons. In return, the central nervous system provides feedback and modulates the afferent stream of information through efferent neurons. The medial olivocochlear efferent system makes direct synaptic contacts with outer hair cells and inhibits amplification brought about by the active mechanical process inherent to these cells. This feedback system offers the potential to improve the detection of signals in background noise, to selectively attend to particular signals, and to protect the periphery from damage caused by overly loud sounds. Acetylcholine released at the synapse between efferent terminals and outer hair cells activates a peculiar nicotinic cholinergic receptor subtype, the α9α10 receptor. At present no pharmacotherapeutic approaches have been designed that target this cholinergic receptor to treat pathologies of the auditory system. The potential use of α9α10 selective drugs in conditions such as noise-induced hearing loss, tinnitus and auditory processing disorders is discussed. © 2009 Elsevier Inc. All rights reserved.

Registro:

Documento: Artículo
Título:The nicotinic receptor of cochlear hair cells: A possible pharmacotherapeutic target?
Autor:Elgoyhen, A.B.; Katz, E.; Fuchs, P.A.
Filiación:Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, 1428, Argentina
Departamento de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, 1121, Argentina
Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Department of Otolaryngology, Head and Neck Surgery, the Center for Hearing and Balance, Center for Sensory Biology, Baltimore, MD 21205-2195, United States
Palabras clave:Cochlea; Efferent feedback; Nicotinic cholinergic receptors; Noise trauma; Tinnitus; am 111; cholinesterase inhibitor; ebselen; neramexane; nicotinic receptor; nicotinic receptor alpha9alpha10; nicotinic receptor alpha9alpha10 agonist; nicotinic receptor alpha9alpha10 antagonist; nicotinic receptor alpha9alpha10 modulator; ondansetron; pnu 120596; tropisetron; unclassified drug; clinical trial; cochlea; Corti organ; drug design; drug efficacy; drug safety; efferent nerve; feedback system; hair cell; hearing loss; human; hypoacusis; Meniere disease; neurotransmitter release; nonhuman; otitis media; priority journal; protein expression; protein targeting; receptor blocking; review; synaptic transmission; tinnitus; Acetylcholine; Animals; Auditory Perceptual Disorders; Cochlea; Dyslexia; Hair Cells, Auditory; Hearing Loss; Humans; Noise; Olivary Nucleus; Protein Subunits; Receptors, Nicotinic; Synaptic Transmission; Tinnitus
Año:2009
Volumen:78
Número:7
Página de inicio:712
Página de fin:719
DOI: http://dx.doi.org/10.1016/j.bcp.2009.05.023
Título revista:Biochemical Pharmacology
Título revista abreviado:Biochem. Pharmacol.
ISSN:00062952
CODEN:BCPCA
CAS:ebselen, 60940-34-3; neramexane, 209185-99-9, 219810-59-0, 457068-92-7; ondansetron, 103639-04-9, 116002-70-1, 99614-01-4; tropisetron, 89565-68-4; Acetylcholine, 51-84-3; Protein Subunits; Receptors, Nicotinic
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00062952_v78_n7_p712_Elgoyhen

Referencias:

  • Hudspeth, A., How hearing happens (1997) Neuron, 19, pp. 947-950
  • Guinan, J.J., Physiology of olivocochlear efferents (1996) The cochlea, pp. 435-502. , Dallos, Popper, and Fay (Eds), Springer-Verlag, New York
  • Guinan, J.J., Warr, W.B., Norris, B.E., Differential olivocochlear projections from lateral vs medial zones of the superior olivary complex (1983) J Comp Neurol, 221, pp. 358-370
  • Rasmussen, G.L., The olivary peduncle and other fiber projections of the superior olivary complex (1946) J Comp Neurol, 84, pp. 141-219
  • Warr, W., Organization of olivocochlear efferent systems in mammals (1992) The mammalian auditory pathway: neuroanatomy, pp. 410-448. , Douglas W., Popper A., and Fay R. (Eds), Springler-Verlag, New York
  • Dallos, P., Cochlear amplification, outer hair cells and prestin (2008) Curr Opin Neurobiol, 18, pp. 370-376
  • Hudspeth, A.J., Making an effort to listen: mechanical amplification in the ear (2008) Neuron, 59, pp. 530-545
  • Chan, D.K., Hudspeth, A.J., Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro (2005) Nat Neurosci, 8, pp. 149-155
  • Jia, S., He, D.Z., Motility-associated hair-bundle motion in mammalian outer hair cells (2005) Nat Neurosci, 8, pp. 1028-1034
  • Kennedy, H.J., Crawford, A.C., Fettiplace, R., Force generation by mammalian hair bundles supports a role in cochlear amplification (2005) Nature, 433, pp. 880-883
  • Brownell, W., Bader, C., Bertrand, D., de Ribaupierre, Y., Evoked mechanical responses of isolated cochlear hair cells (1985) Science, 227, pp. 194-196
  • Zheng, J., Shen, W., He, D.Z., Long, K.B., Madison, L.D., Dallos, P., Prestin is the motor protein of cochlear outer hair cells (2000) Nature, 405, pp. 149-155
  • Mount, D.B., Romero, M.F., The SLC26 gene family of multifunctional anion exchangers (2004) Pflugers Arch, 447, pp. 710-721
  • Franchini, L.F., Elgoyhen, A.B., Adaptive evolution in mammalian proteins involved in cochlear outer hair cell electromotility (2006) Mol Phylogenet Evol, 41, pp. 622-635
  • Fuchs, P., Synaptic transmission at vertebrate hair cells (1996) Current Opinion in Neurobiol, 6, pp. 514-519
  • Dolan, D.F., Nuttall, A.L., Masked cochlear whole-nerve response intensity functions altered by electrical stimulation of the crossed olivocochlear bundle (1988) J Acoust Soc Am, 83, pp. 1081-1086
  • Kawase, T., Delgutte, B., Liberman, M.C., Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones (1993) J Neurophysiol, 70, pp. 2533-2549
  • Winslow, R.L., Sachs, M.B., Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle (1988) Hear Res, 35, pp. 165-189
  • Delano, P.H., Elgueda, D., Hamame, C.M., Robles, L., Selective attention to visual stimuli reduces cochlear sensitivity in chinchillas (2007) J Neurosci, 27, pp. 4146-4153
  • Oatman, L.C., Effects of visual attention on the intensity of auditory evoked potentials (1976) Exp Neurol, 51, pp. 41-53
  • Liberman, M.C., The olivocochlear efferent bundle and susceptibility of the inner ear to acoustic injury (1991) J Neurophysiol, 65, pp. 123-132
  • Maison, S.F., Liberman, M.C., Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength (2000) J Neurosci, 20, pp. 4701-4707
  • Maison, S.F., Luebke, A.E., Liberman, M.C., Zuo, J., Efferent protection from acoustic injury is mediated via alpha9 nicotinic acetylcholine receptors on outer hair cells (2002) J Neurosci, 22, pp. 10838-10846
  • Rajan, R., Electrical stimulation of the inferior colliculus at low rates protects the cochlea from auditory desensitization (1990) Brain Res, 506, pp. 192-204
  • Taranda, J., Maison, S.F., Ballestero, J.A., Katz, E., Savino, J., Vetter, D.E., A point mutation in the hair cell nicotinic cholinergic receptor prolongs cochlear inhibition and enhances noise protection (2009) PLoS Biol, 7, pp. e18
  • Blanchet, C., Erostegui, C., Sugasawa, M., Dulon, D., Acetylcholine-induced potassium current of guinea pig outer hair cells: its dependence on a calcium influx through nicotinic-like receptors (1996) J Neurosci, 16, pp. 2574-2584
  • Chen, C., LeBlanc, C., Bobbin, R., Differences in cholinergic responses from outer hair cells of rat and guinea pig (1996) Hearing Research, 98, pp. 9-17
  • Doi, T., Ohmori, H., Acetylcholine increases intracellular Ca2+ concentration and hyperpolarizes the guinea-pig outer hair cell (1993) Hearing Res, 67, pp. 179-188
  • Dulon, D., Lenoir, M., Cholinergic responses in developing outer hair cells of the rat cochlea (1996) European J Neurosci, 8, pp. 1945-1952
  • Erostegui, C., Norris, C.H., Bobbin, R.P., In vitro characterization of a cholinergic receptor on outer hair cells (1994) Hearing Res, 74, pp. 135-147
  • Evans, M., Acetylcholine activates two currents in guinea-pig outer hair cells (1996) J Physiol, 491, pp. 563-578
  • Fuchs, P.A., Murrow, B.W., A novel cholinergic receptor mediates inhibition of chick cochlear hair cells (1992) Proc R Soc Lond B, 248, pp. 35-40
  • Fuchs, P.A., Murrow, B.W., Cholinergic inhibition of short (outer) hair cells of the chick's cochlea (1992) J Neurosci, 12, pp. 800-809
  • Housley, G.D., Ashmore, J.F., Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea (1991) Proc R Soc Lond B, 244, pp. 161-167
  • Dulon, D., Luo, L., Zhang, C., Ryan, A.F., Expression of small-conductance calcium-activated potassium channels (SK) in outer hair cells of the rat cochlea (1998) Eur J Neurosci, 10, pp. 907-915
  • Oliver, D., Klocker, N., Schuck, J., Baukrowitz, T., Ruppersberg, J.P., Fakler, B., Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells (2000) Neuron, 26, pp. 595-601
  • Elgoyhen, A.B., Johnson, D.S., Boulter, J., Vetter, D.E., Heinemann, S., α9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells (1994) Cell, 79, pp. 705-715
  • Vetter, D., Lieberman, M., Mann, J., Barhanin, J., Boulter, J., Brown, M., Role of α9 nicotinic ACh receptor subunits in the development and function of cochlear efferent innervation (1999) Neuron, 23, pp. 93-103
  • Katz, E., Verbitsky, M., Rothlin, C., Vetter, D., Heinemann, S., Elgoyhen, A., High calcium permeability and calcium block of the α9 nicotinic acetylcholine receptor (2000) Hearing Res, 141, pp. 117-128
  • Rothlin, C., Verbitsky, M., Katz, E., Elgoyhen, A., The α9 nicotinic acetylcholine receptor shares pharmacological properties with type A γ-aminobutyric acid, glycine and type 3 serotonin receptors (1999) Molec Pharmacol, 55, pp. 248-254
  • Verbitsky, M., Rothlin, C., Katz, E., Elgoyhen, A.B., Mixed nicotinic-muscarinic properties of the a9 nicotinic cholinergic receptor (2000) Neuropharmacology, 39, pp. 2515-2524
  • Glowatzki, E., Wild, K., Brandle, U., Fakler, G., Fakler, B., Zenner, H.P., Cell-specific expression of the alpha 9 n-ACh receptor subunit in auditory hair cells revealed by single-cell RT-PCR (1995) Proc R Soc Lond B, 262, pp. 141-147
  • Morley, B., Li, H., Hiel, H., Drescher, D., Elgoyhen, A.B., Identification of the subunits of the nicotinic cholinergic receptors in the rat cochlea using RT-PCR and in situ hybridization (1998) Molec Brain Res, 53, pp. 78-87
  • McNiven, A.I., Yuhas, W.A., Fuchs, P.A., Ionic dependence and agonist preference of an acetylcholine receptor in hair cells (1996) Auditory Neurosci, 2, pp. 63-77
  • Le Novere, N., Changeux, J., Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells (1995) J Molec Evol, 40, pp. 155-172
  • Le Novere, N., Corringer, P.J., Changeux, J.P., The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences (2002) J Neurobiol, 53, pp. 447-456
  • Elgoyhen, A.B., Vetter, D., Katz, E., Rothlin, C., Heinemann, S., Boulter, J., Alpha 10: A determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells (2001) Proc Natl Acad Sci, USA, 98, pp. 3501-3506
  • Lustig, L.R., Peng, H., Hiel, H., Yamamoto, T., Fuchs, P., Molecular cloning and mapping of the human nicotinic acetylcholine receptor α10 (CHRNA10) (2001) Genomics, 73, pp. 272-283
  • Sgard, F., Charpentier, E., Bertrand, S., Walker, N., Caput, D., Graham, D., A novel human nicotinic receptor subunit, α10, that confers functionality to the α9-subunit (2002) Molec Pharmacol, 61, pp. 150-159
  • Vetter, D.E., Katz, E., Maison, S.F., Taranda, J., Turcan, S., Ballestero, J., The alpha10 nicotinic acetylcholine receptor subunit is required for normal synaptic function and integrity of the olivocochlear system (2007) Proc Natl Acad Sci USA, 104, pp. 20594-20599
  • Plazas, P.V., Katz, E., Gomez-Casati, M.E., Bouzat, C., Elgoyhen, A.B., Stoichiometry of the α9α10 nicotinic cholinergic receptor (2005) J Neurosci, 25, pp. 10905-10912
  • Vio, M.M., Holme, R.H., Hearing loss and tinnitus: 250 million people and a US$10 billion potential market (2005) Drug Discov Today, 10, pp. 1263-1265
  • Cohen, S.M., Labadie, R.F., Haynes, D.S., Primary care approach to hearing loss: the hidden disability (2005) Ear Nose Throat J, 84 (26), pp. 9-31. , 44
  • Mohr, P.E., Feldman, J.J., Dunbar, J.L., McConkey-Robbins, A., Niparko, J.K., Rittenhouse, R.K., The societal costs of severe to profound hearing loss in the United States (2000) Int J Technol Assess Health Care, 16, pp. 1120-1135
  • Cryns, K., Van Camp, G., Deafness genes and their diagnostic applications (2004) Audiol Neurootol, 9, pp. 2-22
  • Vrijens, K., Van Laer, L., Van Camp, G., Human hereditary hearing impairment: mouse models can help to solve the puzzle (2008) Hum Genet, 124, pp. 325-348
  • Pujol, R., Carlier, E., Cochlear synaptogenesis after sectioning the efferent bundle (1982) Brain Res, 255, pp. 151-154
  • Walsh, E., McGee, J., Does activity in the olivocochlear bundle affect development of the auditory periphery? (1997) Diversity in auditory mechanics, pp. 376-385. , Lewis E., Long G., Lyon R., Narins P., Steele C., and Hecht-Poinar E. (Eds), World Scientific, Singapore
  • Walsh, E., McGee, J., McFadden, S., Liberman, M., Long-term effects of sectioning the olivocochlear bundle in neonatal cats (1998) J Neurosci, 18, pp. 3859-3869
  • Simmons, D.D., Development of the inner ear efferent system across vertebrate species (2002) J Neurobiol, 53, pp. 228-250
  • Glowatzki, E., Fuchs, P., Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea (2000) Science, 288, pp. 2366-2368
  • Katz, E., Elgoyhen, A.B., Gomez-Casati, M.E., Knipper, M., Vetter, D.E., Fuchs, P.A., Developmental regulation of nicotinic synapses on cochlear inner hair cells (2004) J Neurosci, 24, pp. 7814-7820
  • Lim, D.J., Effects of noise and ototoxic drugs at the cellular level in the cochlea: a review (1986) Am J Otolaryngol, 7, pp. 73-99
  • Borg, E., Canlon, B., Engstrom, B., Noise-induced hearing loss. Literature review and experiments in rabbits. Morphological and electrophysiological features, exposure parameters and temporal factors, variability and interactions (1995) Scand Audiol Suppl, 40, pp. 1-147
  • Barney, R., Bohnker, B.K., Hearing thresholds for U.S. Marines: comparison of aviation, combat arms, and other personnel (2006) Aviat Space Environ Med, 77, pp. 53-56
  • Bohnker, B.K., Page, J.C., Rovig, G.W., Betts, L.S., Sack, D.M., Navy Hearing Conservation Program: 1995-1999 retrospective analysis of threshold shifts for age, sex, and officer/enlisted status (2004) Mil Med, 169, pp. 73-76
  • Rovig, G.W., Bohnker, B.K., Page, J.C., Hearing health risk in a population of aircraft carrier flight deck personnel (2004) Mil Med, 169, pp. 429-432
  • Neitzel, R., Meischke, H., Daniell, W.E., Trabeau, M., Somers, S., Seixas, N.S., Development and pilot test of hearing conservation training for construction workers (2008) Am J Ind Med, 51, pp. 120-129
  • Tak, S., Davis, R.R., Calvert, G.M., Exposure to hazardous workplace noise and use of hearing protection devices among US workers-NHANES, 1999-2004 (2009) Am J Ind Med, 52, pp. 358-371
  • Trabeau, M., Neitzel, R., Meischke, H., Daniell, W.E., Seixas, N.S., A comparison of "Train-the-Trainer" and expert training modalities for hearing protection use in construction (2008) Am J Ind Med, 51, pp. 130-137
  • Landen, D., Wilkins, S., Stephenson, M., McWilliams, L., Noise exposure and hearing loss among sand and gravel miners (2004) J Occup Environ Hyg, 1, pp. 532-541
  • Neitzel, R., Yost, M., Task-based assessment of occupational vibration and noise exposures in forestry workers (2002) AIHA J (Fairfax, Va), 63, pp. 617-627
  • Beckett, W.S., Chamberlain, D., Hallman, E., May, J., Hwang, S.A., Gomez, M., Hearing conservation for farmers: source apportionment of occupational and environmental factors contributing to hearing loss (2000) J Occup Environ Med, 42, pp. 806-813
  • Hong, O.S., Kim, M.J., Factors associated with hearing loss among workers of the airline industry in Korea (2001) ORL Head Neck Nurs, 19, pp. 7-13
  • Jaruchinda, P., Thongdeetae, T., Panichkul, S., Hanchumpol, P., Prevalence and an analysis of noise-induced hearing loss in army helicopter pilots and aircraft mechanics (2005) J Med Assoc Thai, 88 (SUPPL. 3), pp. S232-S239
  • Kim, J., Park, H., Ha, E., Jung, T., Paik, N., Yang, S., Combined effects of noise and mixed solvents exposure on the hearing function among workers in the aviation industry (2005) Ind Health, 43, pp. 567-573
  • Landon, P., Breysse, P., Chen, Y., Noise exposures of rail workers at a North American chemical facility (2005) Am J Ind Med, 47, pp. 364-369
  • Seshagiri, B., Exposure to noise on board locomotives (2003) AIHA J (Fairfax, Va), 64, pp. 699-707
  • Kumar, A., Mathur, N.N., Varghese, M., Mohan, D., Singh, J.K., Mahajan, P., Effect of tractor driving on hearing loss in farmers in India (2005) Am J Ind Med, 47, pp. 341-348
  • Solecki, L., Characteristics of annual exposure to noise among private farmers on family farms of mixed-production profile (2006) Ann Agric Environ Med, 13, pp. 113-118
  • Biassoni, E.C., Serra, M.R., Richtert, U., Joekes, S., Yacci, M.R., Carignani, J.A., Recreational noise exposure and its effects on the hearing of adolescents. Part II. Development of hearing disorders (2005) Int J Audiol, 44, pp. 74-85
  • Serra, M.R., Biassoni, E.C., Richter, U., Minoldo, G., Franco, G., Abraham, S., Recreational noise exposure and its effects on the hearing of adolescents. Part I. an Interdisciplinary long-term study (2005) Int J Audiol, 44, pp. 65-73
  • Lynch, E.D., Kil, J., Compounds for the prevention and treatment of noise-induced hearing loss (2005) Drug Discov Today, 10, pp. 1291-1298
  • Henderson, D., Bielefeld, E.C., Harris, K.C., Hu, B.H., The role of oxidative stress in noise-induced hearing loss (2006) Ear Hear, 27, pp. 1-19
  • Kopke, R.D., Jackson, R.L., Coleman, J.K., Liu, J., Bielefeld, E.C., Balough, B.J., NAC for noise: from the bench top to the clinic (2007) Hear Res, 226, pp. 114-125
  • Wang, J., Ruel, J., Ladrech, S., Bonny, C., van de Water, T.R., Puel, J.L., Inhibition of the c-Jun N-terminal kinase-mediated mitochondrial cell death pathway restores auditory function in sound-exposed animals (2007) Mol Pharmacol, 71, pp. 654-666
  • Kil, J., Pierce, C., Tran, H., Gu, R., Lynch, E.D., Ebselen treatment reduces noise induced hearing loss via the mimicry and induction of glutathione peroxidase (2007) Hear Res, 226, pp. 44-51
  • Chen, G.D., Kong, J., Reinhard, K., Fechter, L.D., NMDA receptor blockage protects against permanent noise-induced hearing loss but not its potentiation by carbon monoxide (2001) Hear Res, 154, pp. 108-115
  • Duan, M., Chen, Z., Qiu, J., Ulfendahl, M., Laurell, G., Borg, E., Low-dose, long-term caroverine administration attenuates impulse noise-induced hearing loss in the rat (2006) Acta Otolaryngol, 126, pp. 1140-1147
  • Reiter, E.R., Liberman, M.C., Efferent-mediated protection from acoustic overexposure: relation to slow effects of olivocochlear stimulation (1995) J Neurophysiol, 73, pp. 506-514
  • Kujawa, S.G., Liberman, M.C., Conditioning-related protection from acoustic injury: effects of chronic deefferentation and sham surgery (1997) J Neurophysiol, 78, pp. 3095-3106
  • Handrock, M., Zeisberg, J., The influence of the effect system on adaptation, temporary and permanent threshold shift (1982) Arch Otorhinolaryngol, 234, pp. 191-195
  • Eggermont, J.J., Role of auditory cortex in noise- and drug-induced tinnitus (2008) Am J Audiol, 17, pp. S162-S169
  • Moller, A.R., Tinnitus: presence and future (2007) Prog Brain Res, 166, pp. 3-16
  • Tyler, R., Coelho, C., Tao, P., Ji, H., Noble, W., Gehringer, A., Identifying tinnitus subgroups with cluster analysis (2008) Am J Audiol, 17, pp. S176-S184
  • Mount, C., Downton, C., Alzheimer disease: progress or profit? (2006) Nat Med, 12, pp. 780-784
  • Rammes, G., Schierloh, A., Neramexane (merz pharmaceuticals/forest laboratories) (2006) IDrugs, 9, pp. 128-135
  • Plazas, P.V., Savino, J., Kracun, S., Gomez-Casati, M.E., Katz, E., Parsons, C.G., Inhibition of the alpha9alpha10 nicotinic cholinergic receptor by neramexane, an open channel blocker of N-methyl-d-aspartate receptors (2007) Eur J Pharmacol, 566, pp. 11-19
  • Eggermont, J.J., Tinnitus: neurobiological substrates (2005) Drug Discov Today, 10, pp. 1283-1290
  • Van de Heyning, P., Vermeire, K., Diebl, M., Nopp, P., Anderson, I., De Ridder, D., Incapacitating unilateral tinnitus in single-sided deafness treated by cochlear implantation (2008) Ann Otol Rhinol Laryngol, 117, pp. 645-652
  • Mody, M., Wehner, D.T., Ahlfors, S.P., Auditory word perception in sentence context in reading-disabled children (2008) Neuroreport, 19, pp. 1567-1571
  • Demonet, J.F., Taylor, M.J., Chaix, Y., Developmental dyslexia (2004) Lancet, 363, pp. 1451-1460
  • Ramirez, J., Mann, V., Using auditory-visual speech to probe the basis of noise-impaired consonant-vowel perception in dyslexia and auditory neuropathy (2005) J Acoust Soc Am, 118, pp. 1122-1133
  • Sperling, A.J., Lu, Z.L., Manis, F.R., Seidenberg, M.S., Deficits in perceptual noise exclusion in developmental dyslexia (2005) Nat Neurosci, 8, pp. 862-863
  • Kawase, T., Liberman, M.C., Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones (1993) J Neurophysiol, 70, pp. 2519-2532
  • Micheyl, C., Carbonnel, O., Collet, L., Medial olivocochlear system and loudness adaptation: differences between musicians and non-musicians (1995) Brain Cogn, 29, pp. 127-136
  • Micheyl, C., Collet, L., Involvement of the olivocochlear bundle in the detection of tones in noise (1996) J Acoust Soc Am, 99, pp. 1604-1610
  • Micheyl, C., Khalfa, S., Perrot, X., Collet, L., Difference in cochlear efferent activity between musicians and non-musicians (1997) Neuroreport, 8, pp. 1047-1050
  • Micheyl, C., Perrot, X., Collet, L., Relationship between auditory intensity discrimination in noise and olivocochlear efferent system activity in humans (1997) Behav Neurosci, 111, pp. 801-807
  • Giraud, A.L., Garnier, S., Micheyl, C., Lina, G., Chays, A., Chery-Croze, S., Auditory efferents involved in speech-in-noise intelligibility (1997) Neuroreport, 8, pp. 1779-1783
  • Kumar, U.A., Vanaja, C.S., Functioning of olivocochlear bundle and speech perception in noise (2004) Ear Hear, 25, pp. 142-146
  • Veuillet, E., Bazin, F., Collet, L., Objective evidence of peripheral auditory disorders in learning-impaired children (1999) J Audiol Med, 8, pp. 18-29
  • Brashears, S.M., Morlet, T.G., Berlin, C.I., Hood, L.J., Olivocochlear efferent suppression in classical musicians (2003) J Am Acad Audiol, 14, pp. 314-324
  • Veuillet, E., Magnan, A., Ecalle, J., Thai-Van, H., Collet, L., Auditory processing disorder in children with reading disabilities: effect of audiovisual training (2007) Brain, 130, pp. 2915-2928
  • de Boer, J., Thornton, A.R., Neural correlates of perceptual learning in the auditory brainstem: efferent activity predicts and reflects improvement at a speech-in-noise discrimination task (2008) J Neurosci, 28, pp. 4929-4937
  • Lindstrom, J.M., Nicotinic acetylcholine receptors of muscles and nerves: comparison of their structures, functional roles, and vulnerability to pathology (2003) Ann N Y Acad Sci, 998, pp. 41-52
  • Gotti, C., Riganti, L., Vailati, S., Clementi, F., Brain neuronal nicotinic receptors as new targets for drug discovery (2006) Curr Pharm Des, 12, pp. 407-428
  • Hogg, R.C., Buisson, B., Bertrand, D., Allosteric modulation of ligand-gated ion channels (2005) Biochem Pharmacol, 70, pp. 1267-1276
  • White, H.K., Levin, E.D., Chronic transdermal nicotine patch treatment effects on cognitive performance in age-associated memory impairment (2004) Psychopharmacology (Berl), 171, pp. 465-471
  • Smith, R.C., Singh, A., Infante, M., Khandat, A., Kloos, A., Effects of cigarette smoking and nicotine nasal spray on psychiatric symptoms and cognition in schizophrenia (2002) Neuropsychopharmacology, 27, pp. 479-497
  • Albuquerque, E.X., Santos, M.D., Alkondon, M., Pereira, E.F., Maelicke, A., Modulation of nicotinic receptor activity in the central nervous system: a novel approach to the treatment of Alzheimer disease (2001) Alzheimer Dis Assoc Disord, 15 (SUPPL. 1), pp. S19-S25
  • Bertrand, D., Gopalakrishnan, M., Allosteric modulation of nicotinic acetylcholine receptors (2007) Biochem Pharmacol, 74, pp. 1155-1163
  • Hurst, R.S., Hajos, M., Raggenbass, M., Wall, T.M., Higdon, N.R., Lawson, J.A., A novel positive allosteric modulator of the alpha7 neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization (2005) J Neurosci, 25, pp. 4396-4405
  • Zorrilla de San Martin, J., Ballestero, J., Katz, E., Elgoyhen, A.B., Fuchs, P.A., Ryanodine is a positive modulator of acetylcholine receptor gating in cochlear hair cells (2007) J Assoc Res Otolaryngol, 8, pp. 474-483
  • Rothlin, C.V., Lioudyno, M.I., Silbering, A.F., Plazas, P.V., Casati, M.E., Katz, E., Direct interaction of serotonin type 3 receptor ligands with recombinant and native alpha 9 alpha 10-containing nicotinic cholinergic receptors (2003) Mol Pharmacol, 63, pp. 1067-1074

Citas:

---------- APA ----------
Elgoyhen, A.B., Katz, E. & Fuchs, P.A. (2009) . The nicotinic receptor of cochlear hair cells: A possible pharmacotherapeutic target?. Biochemical Pharmacology, 78(7), 712-719.
http://dx.doi.org/10.1016/j.bcp.2009.05.023
---------- CHICAGO ----------
Elgoyhen, A.B., Katz, E., Fuchs, P.A. "The nicotinic receptor of cochlear hair cells: A possible pharmacotherapeutic target?" . Biochemical Pharmacology 78, no. 7 (2009) : 712-719.
http://dx.doi.org/10.1016/j.bcp.2009.05.023
---------- MLA ----------
Elgoyhen, A.B., Katz, E., Fuchs, P.A. "The nicotinic receptor of cochlear hair cells: A possible pharmacotherapeutic target?" . Biochemical Pharmacology, vol. 78, no. 7, 2009, pp. 712-719.
http://dx.doi.org/10.1016/j.bcp.2009.05.023
---------- VANCOUVER ----------
Elgoyhen, A.B., Katz, E., Fuchs, P.A. The nicotinic receptor of cochlear hair cells: A possible pharmacotherapeutic target?. Biochem. Pharmacol. 2009;78(7):712-719.
http://dx.doi.org/10.1016/j.bcp.2009.05.023