Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Parasites of the genus Plasmodium responsible for Malaria are obligate intracellular pathogens residing in mammalian red blood cells, hepatocytes, or mosquito midgut epithelial cells. Regarding that detailed knowledge on the sphingolipid biosynthetic pathway of the apicomplexan protozoan parasites is scarce, different stages of Plasmodium falciparum were treated with tamoxifen in order to evaluate the effects of this drug on the glycosphingolipid biosynthesis. Thin layer chromatography, High performance reverse phase chromatography and UV-MALDI-TOF mass spectrometry were the tools used for the analysis. In the ring forms, the increase of NBD-phosphatidyl inositol biosynthesis was notorious but differences at NBD-GlcCer levels were undetectable. In trophozoite forms, an abrupt decrease of NBD-acylated GlcDHCer and NBD-GlcDHCer in addition to an increase of NBD-PC biosynthesis was observed. On the contrary, in schizonts, tamoxifen seems not to be producing substantial changes in lipid biosynthesis. Our findings indicate that in this parasite, tamoxifen is exerting an inhibitory action on Glucosylceramidesynthase and sphingomyelin synthase levels. Moreover, regarding that Plasmodium does not biosynthesize inositolphosphoceramides, the accumulation of phosphatidylinositol should indicate an inhibitory action on glycosylinositol phospholipid synthesis. © 2018 Elsevier Inc.

Registro:

Documento: Artículo
Título:Effect of tamoxifen on the sphingolipid biosynthetic pathway in the different intraerythrocytic stages of the apicomplexa Plasmodium falciparum
Autor:Piñero, T.A.; Landoni, M.; Duschak, V.G.; Katzin, A.M.; Couto, A.S.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Dpto. de Química Orgánica - CONICET, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Intendente Güiraldes 2160, C1428GA, Ciudad Universitaria, Buenos Aires, Argentina
Depto. de investigación, Instituto Nacional de Parasitología “Dr Mario Fatala Chaben”, ANLIS-Malbrán, Ministerio de Salud de la Nación, Av. Paseo Colon 568, Buenos Aires, 1063, Argentina
Departamento de Parasitología, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
Palabras clave:Glucosylceramide synthase; Glycosphingolipids; Plasmodium falciparum; Tamoxifen; ceramide glucosyltransferase; glycosphingolipid; phosphatidylinositol; sphingolipid; sphingomyelin; sphingomyelin synthase; tamoxifen; unclassified drug; glycosphingolipid; inositolphosphoceramides; phosphatidylinositol; sphingolipid; tamoxifen; Apicomplexa; Article; controlled study; drug effect; enzyme inhibition; high performance liquid chromatography; life cycle stage; lipid storage; lipogenesis; matrix assisted laser desorption ionization time of flight mass spectrometry; nonhuman; Plasmodium falciparum; priority journal; reversed phase liquid chromatography; schizont; sphingolipid metabolism; thin layer chromatography; trophozoite; Apicomplexa; biosynthesis; drug effects; erythrocyte; life cycle stage; mass spectrometry; metabolism; parasitology; Plasmodium falciparum; protozoal infection; Apicomplexa; Biosynthetic Pathways; Chromatography, Reverse-Phase; Erythrocytes; Glycosphingolipids; Life Cycle Stages; Mass Spectrometry; Phosphatidylinositols; Plasmodium falciparum; Protozoan Infections; Sphingolipids; Tamoxifen
Año:2018
Volumen:497
Número:4
Página de inicio:1082
Página de fin:1088
DOI: http://dx.doi.org/10.1016/j.bbrc.2018.02.183
Título revista:Biochemical and Biophysical Research Communications
Título revista abreviado:Biochem. Biophys. Res. Commun.
ISSN:0006291X
CODEN:BBRCA
CAS:ceramide glucosyltransferase, 37237-44-8; sphingomyelin, 85187-10-6; tamoxifen, 10540-29-1; Glycosphingolipids; inositolphosphoceramides; Phosphatidylinositols; Sphingolipids; Tamoxifen
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0006291X_v497_n4_p1082_Pinero

Referencias:

  • World malaria report, (2015), World Health Organization Geneva Available from:; Schwartz, L., Brown, G.V., Genton, B., Moorthy, V.S., A review of malaria vaccine clinical projects based on the WHO rainbow table (2012) Malar. J., 11, pp. 11-33
  • Young, S.A., Mina, J.G., Denny, P.W., Smith, T.K., Sphingolipid and ceramide homeostasis: potential therapeutic targets (2012) Biochem. Res. Intern., 2012, p. 248135
  • Hannun, Y.A., Obeid, L.M., Principles of bioactive lipid signalling: lessons from sphingolipids (2008) Nat. Rev. Mol. Cell Biol., 9, pp. 139-150
  • Wang, G., Silva, J., Krishnamurthy, K., Tran, E., Condie, B.G., Bieberich, E., Direct binding to ceramide activates protein kinase C before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells (2005) J. Biol. Chem., 280, pp. 26415-26424
  • Huwiler, A., Brunner, J., Hummel, R., Vervoordeldonk, M., Stabel, S., van den Bosch, H., Pfeilschifter, J., Ceramide-binding and activation defines protein kinase c-Raf as a ceramide-activated protein kinase (1996) Proc. Natl. Acad. Sci. U. S. A., 93, pp. 6959-6963
  • Lee, J.Y., Hannun, Y.A., Obeid, L.M., Ceramide inactivates cellular protein kinase Calpha (1996) J. Biol. Chem., 271, pp. 13169-13174
  • van Doorn, R., Nijland, P.G., Dekker, N., Witte, M.E., Lopes-Pinheiro, M.A., van het Hof, B., Kooij, G., de Vries, H.E., Fingolimod attenuates ceramide-induced blood-brain barrier dysfunction in multiple sclerosis by targeting reactive astrocytes (2012) Acta Neuropathol., 124, pp. 397-410
  • Lang, P.A., Schenck, M., Nicolay, J.P., Becker, J.U., Kempe, D.S., Lupescu, A., Koka, S., Lang, F., Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide (2007) Nat. Med., 13, pp. 164-170
  • Panchal, M., Gaudin, M., Lazar, A.N., Salvati, E., Rivals, I., Ayciriex, S., Dauphinot, L., Duyckaerts, C., Ceramides and sphingomyelinases in senile plaques (2014) Neurobiol. Dis., 65, pp. 193-201
  • Wiegmann, K., Schütze, S., Machleidt, T., Witte, D., Krönke, M., Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling (1994) Cell, 78, pp. 1005-1015
  • Sanvicens, N., Cotter, T.G., Ceramide is the key mediator of oxidative stress-induced apoptosis in retinal photoreceptor cells (2006) J. Neurochem., 98, pp. 1432-1444
  • Azzouz, N., Rauscher, B., Gerold, P., Cesbron-Delauw, M.F., Dubremetz, J.F., Schwarz, R.T., Evidence for de novo sphingolipid biosynthesis in Toxoplasma gondii (2002) Int. J. Parasitol., 32, pp. 677-684
  • Gerold, P., Schwarz, R.T., Biosynthesis of glycosphingolipids de-novo by the human malaria parasite Plasmodium falciparum (2001) Mol. Biochem.Parasitol., 112, pp. 29-37
  • Ansorge, I., Jeckel, D., Wieland, F., Lingelbach, K., Plasmodium falciparum-infected erythrocytes utilize a synthetic truncated ceramide precursor for synthesis and secretion of truncated sphingomyelin (1995) Biochem. J., 308, pp. 335-341
  • Elmendorf, H.G., Haldar, K., Plasmodium falciparum exports the Golgi marker sphingomyelin synthase into a tubovesicular network in the cytoplasm of mature erythrocytes (1994) J. Cell Biol., 124, pp. 449-462
  • Haldar, K., Uyetake, L., Ghori, N., Elmendorf, H.G., Li, W.L., The accumulation and metabolism of a fluorescent ceramide derivative in Plasmodium falciparum-infected erythrocytes (1991) Mol. Biochem. Parasitol., 49, pp. 143-156
  • Welti, R., Mui, E., Sparks, A., Wernimont, S., Isaac, G., Kirisits, M., Lipidomic analysis of Toxoplasma gondii reveals unusual polar lipids (2007) Biochemistry, 46, pp. 13882-13890
  • Couto, A.S., Caffaro, C., Uhrig, M.L., Kimura, E., Peres, V.J., Katzin, A.M., Nishioka, M., Erra-Balsells, R., Glycosphingolipids in Plasmodium falciparum. Presence of an active glucosylceramide synthase (2004) Eur. J. Biochem., 271, pp. 2204-2214
  • Galati, S., Ekland, E.H., Ruggles, K.V., Chan, R.B., Jayabalasingham, B., Zhou, B., Mantel, P.Y., Fidock, D.A., Profiling the essential nature of lipid metabolism in asexual blood and gametocyte stages of Plasmodium falciparum (2015) Cell Host Microbe, 18 (3), pp. 371-381
  • Heung, L.J., Luberto, C., Del Poeta, M., Role of sphingolipids in microbial pathogenesis (2006) Infect. Immun., 74, pp. 28-39
  • Taha, T.A., Mullen, T.D., Obeid, L.M., A house divided: ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death (2006) Biochim. Biophys. Acta, 1758, pp. 2027-2036
  • Spiegel, S., Milstien, S., Sphingosine 1-phosphate, a key cell signaling molecule (2002) J. Biol. Chem., 277, pp. 25851-25854
  • Kolter, T., Proia, R.L., Sandhoff, K., Combinatorial ganglioside biosynthesis (2002) J. Biol. Chem., 277, pp. 25859-25862
  • Kolesnick, R., Altieri, D., Fuks, Z., A CERTain role for ceramide in taxane-induced cell death (2007) Canc. Cell, 11, pp. 473-475
  • Bose, R., Verheij, M., Haimovitz-Friedman, A., Scotto, K., Fuks, Z., Kolesnick, R., Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals (1995) Cell, 82, pp. 405-414
  • Rathore, S., Jain, S., Sinha, D., Gupta, M., Asad, M., Srivastava, A., Narayanan, M.S., Mohmmed, A., Disruption of a mitochondrial protease machinery in Plasmodium falciparum is an intrinsic signal for parasite cell death (2011) Cell Death Dis., 2. , e231
  • Kreidenweiss, A., Kremsner, P.G., Mordmuller, B., Comprehensive study of proteasome inhibitors against Plasmodium falciparum laboratory strains and field isolates from Gabon (2008) Malar. J., 7, pp. 187-195
  • Pradel, G., Schlitzer, M., Antibiotics in malaria therapy and their effect on the parasite apicoplast (2010) Curr. Mol. Med., 10, pp. 335-349
  • Trager, W., Jensen, J.B., Human malaria parasites in continuous culture (1976) Science, 193, pp. 673-675
  • Kimura, E.A., Couto, A.S., Peres, V.J., Casal, O.L., Katzin, A.M., N-linked glycoproteins are related to schizogony of the intraerythrocytic stages in Plasmodium falciparum (1996) J. Biol. Chem., 271, pp. 14452-14461
  • Braun-Breton, C., Jendoubi, M., Brunet, E., Perrin, L., Scaife, J., Pereira da Silva, L., In vivo time course of synthesis and processing of major schizont membrane polypeptides in Plasmodium falciparum (1986) Mol. Biochem. Parasitol., 20, pp. 33-43
  • Lambros, C., Vanderberg, J.P., Synchronization of erythrocytic stages in culture (1979) J. Parasitol., 65, pp. 418-420
  • Miguel, D.C., Yokoyama-Yasunaka, J.K., Andreoli, W.K., Mortara, R.A., Uliana, S.R., Tamoxifen is effective against Leishmania and induces a rapid alkalinization of parasitophorous vacuoles harbouring L. (Leishmania) amazonensis amastigotes (2007) J. Antimicrob. Chemother., 60, pp. 526-534
  • Landoni, M., Duschak, V.G., Peres, V.J., Casal, O.L., Katzin, A.M., Plasmodium falciparum biosynthesizes sulfoglycosphingolipids (2007) Mol. Biochem. Parasitol., 154, pp. 22-29
  • Ben Mamoun, C., Prigge, S.T., Vial, H., Targeting the lipid metabolic pathways for the treatment of malaria (2010) Drug Dev. Res., 71 (1), pp. 44-55
  • Lauer, S.A., Ghori, N., Haldar, K., Sphingolipid synthesis as a target for chemotherapy against malaria parasites (1995) Proc. Natl. Acad. Sci. U. S. A., 92, pp. 9181-9185
  • Hanada, K., Mitamura, T., Fukasawa, M., Magistrado, P.A., Hori, T., Nishijima, M., Neutral sphingomyelinase activity dependent on Mg2+ and anionic phospholipids in the intraerythrocytic malaria parasite Plasmodium falciparum (2000) Biochem. J., 346, pp. 671-677
  • Labaied, M., Dagan, A., Dellinger, M., Gèze, M., Egée, S., Thomas, S.L., Wang, C., Grellier, P., Anti-Plasmodium activity of ceramide analogs (2004) Malar. J., 3, pp. 49-59
  • Staines, H.M., Dee, B.C., Shen, M., Clive Ellory, J., (2004) Blood Cell Mol. Dis., 32, pp. 344-348
  • Schofield, L., Hewitt, M.C., Evans, K., Siomos, M.A., Seeberger, P.H., Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria (2002) Nature, 418, pp. 785-789
  • Debierre-Grockiego, F., Schwarz, R.T., Immunological reactions in response to apicomplexan glycosylphosphatidylinositols (2010) Glycobiology, 20, pp. 801-811
  • Thériault, C., Richard, D., Characterization of a putative Plasmodium falciparum SAC1 phosphoinositide-phosphatase homologue potentially required for survival during the asexual erythrocytic stages (2017) Sci. Rep., 7 (1), pp. 12710-12719

Citas:

---------- APA ----------
Piñero, T.A., Landoni, M., Duschak, V.G., Katzin, A.M. & Couto, A.S. (2018) . Effect of tamoxifen on the sphingolipid biosynthetic pathway in the different intraerythrocytic stages of the apicomplexa Plasmodium falciparum. Biochemical and Biophysical Research Communications, 497(4), 1082-1088.
http://dx.doi.org/10.1016/j.bbrc.2018.02.183
---------- CHICAGO ----------
Piñero, T.A., Landoni, M., Duschak, V.G., Katzin, A.M., Couto, A.S. "Effect of tamoxifen on the sphingolipid biosynthetic pathway in the different intraerythrocytic stages of the apicomplexa Plasmodium falciparum" . Biochemical and Biophysical Research Communications 497, no. 4 (2018) : 1082-1088.
http://dx.doi.org/10.1016/j.bbrc.2018.02.183
---------- MLA ----------
Piñero, T.A., Landoni, M., Duschak, V.G., Katzin, A.M., Couto, A.S. "Effect of tamoxifen on the sphingolipid biosynthetic pathway in the different intraerythrocytic stages of the apicomplexa Plasmodium falciparum" . Biochemical and Biophysical Research Communications, vol. 497, no. 4, 2018, pp. 1082-1088.
http://dx.doi.org/10.1016/j.bbrc.2018.02.183
---------- VANCOUVER ----------
Piñero, T.A., Landoni, M., Duschak, V.G., Katzin, A.M., Couto, A.S. Effect of tamoxifen on the sphingolipid biosynthetic pathway in the different intraerythrocytic stages of the apicomplexa Plasmodium falciparum. Biochem. Biophys. Res. Commun. 2018;497(4):1082-1088.
http://dx.doi.org/10.1016/j.bbrc.2018.02.183