Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Arenavirus morphogenesis and budding occurs at cellular plasma membrane; however, the nature of membrane assembly sites remains poorly understood. In this study we examined the effect of different cholesterol-lowering agents on Junín virus (JUNV) multiplication. We found that cholesterol cell depletion reduced JUNV glycoproteins (GPs) membrane expression and virus budding. Analysis of membrane protein insolubility in Triton X-100 suggested that JUNV GPs associate with cholesterol enriched membranes. Rafts dissociation conditions as warm detergent extraction and cholesterol removal by methyl-β-cyclodextrin compound showed to impair GPs cholesterol enriched membrane association. Analysis of GPs transfected cells showed similar results suggesting that membrane raft association is independent of other viral proteins. © 2012 Elsevier Inc.

Registro:

Documento: Artículo
Título:Membrane localization of Junín virus glycoproteins requires cholesterol and cholesterol rich membranes
Autor:Cordo, S.M.; Valko, A.; Martinez, G.M.; Candurra, N.A.
Filiación:Laboratorio de Virología, Departamento de Química Biológica, IQUIBICEN, Facultad de Ciencias Exactas y Naturales, UBA. Ciudad Universitaria, Pabellón II, Piso 4, 1428, Buenos Aires, Argentina
Palabras clave:Cholesterol; Junín virus; Membrane rafts; beta cyclodextrin; cholesterol; glycoprotein; triton x 100; virus glycoprotein; virus protein; animal cell; article; controlled study; Junin virus; nonhuman; priority journal; protein localization; virus release; Animals; Anticholesteremic Agents; Cell Membrane; Cercopithecus aethiops; Cholesterol; Dogs; Junin virus; Madin Darby Canine Kidney Cells; Membrane Glycoproteins; Vero Cells; Viral Envelope Proteins; Virus Replication; Arenavirus; Junin virus
Año:2013
Volumen:430
Número:3
Página de inicio:912
Página de fin:917
DOI: http://dx.doi.org/10.1016/j.bbrc.2012.12.053
Título revista:Biochemical and Biophysical Research Communications
Título revista abreviado:Biochem. Biophys. Res. Commun.
ISSN:0006291X
CODEN:BBRCA
CAS:beta cyclodextrin, 7585-39-9; cholesterol, 57-88-5; Anticholesteremic Agents; Cholesterol, 57-88-5; Membrane Glycoproteins; Viral Envelope Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0006291X_v430_n3_p912_Cordo

Referencias:

  • Bowen, M.D., Peters, C.J., Nichol, S.T., Phylogenetic analysis of the Arenaviridae: patterns of virus evolution and evidence for cospeciation between arenaviruses and their rodent hosts (1997) Mol. Phylogenet. Evol., 8, pp. 301-316
  • Delgado, S., Erickson, B.R., Agudo, R., Chapare virus, a newly discovered arenavirus isolated from a fatal hemorrhagic fever case in Bolivia (2008) PLoS Pathog., 4 (4), pp. e1000047
  • Briese, T., Paweska, J.T., McMullan, L.K., Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from Southern Africa (2009) PLoS Pathog., 5 (5), pp. e1000455
  • Enria, D.A., Briggiler, A.M., Sánchez, Z., Treatment of Argentine hemorrhagic fever (2008) Antiviral Res., 78, pp. 132-139
  • Weissenbacher, M.C., Laguens, R.P., Coto, C.E., Argentine hemorrhagic fever (1987) Curr. Top. Microbiol. Immunol., 134, pp. 79-116
  • York, J., Romanowski, V., Lu, M., The signal peptide of the Junin arenavirus envelope glycoprotein is myristoylated and forms an essential subunit of the mature G1-G2 complex (2004) J. Virol., 78, pp. 10783-10792
  • Macovei, A., Radulescu, C., Lazar, C., Hepatitis B virus requires intact caveolin-1function for productive infection in HepaRG cells (2010) J. Virol., 84, pp. 243-253
  • Werling, D., Hope, J.C., Chaplin, P., Involvement of caveolae in the uptake of respiratory syncytial virus antigen by dendritic cells (1999) J. Leukoc. Biol., 66, pp. 50-58
  • Cantín, C., Holguera, J., Ferreira, L., Newcastle disease virus may enter cells by caveola-mediated endocytosis (2007) J. Gen. Virol., 88, pp. 559-569
  • Harmon, B., Schudel, B.R., Maar, D., Valley fever virus strain MP-12 enters mammalian host cells via caveola-mediated endocytosis (2012) J. Virol., 86, pp. 12954-12970
  • Rojek, J.M., Perez, M., Kunz, S., Cellular entry of lymphocytic choriomeningitis virus (2008) J. Virol., 82, pp. 1505-1517
  • Pasqual, G., Rojek, J.M., Masin, M., Old world arenaviruses enter the host cell via the multivesicular body and depend on the endosomal sorting complex required for transport (2011) PLoS Pathog., 7 (9), pp. e1002232
  • Martinez, M.G., Cordo, S.M., Candurra, N.A., Characterization of Junín arenavirus cell entry (2007) J. Gen. Virol., 88, pp. 1776-1784
  • Scheiffele, P., Rietveld, A., Wilk, T., Influenza viruses select ordered lipid domains during budding from the plasma membrane (1999) J. Biol. Chem., 274, pp. 2038-2044
  • Nguyen, D.H., Hildreth, J.E., Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts (2000) J. Virol., 74, pp. 3264-3272
  • Manie, S.N., Debreyne, S., Vincent, S., Measles virus structural components are enriched into lipid raft microdomains: a potential cellular location for virus assembly (2000) J. Virol., 74, pp. 305-311
  • Kundu, A., Avalos, R.T., Sanderson, C.M., Transmembrane domain of influenza virus neuraminidase, a type II protein, possesses an apical sorting signal in polarized MDCK cells (1996) J. Virol., 70, pp. 6508-6515
  • Contigiani, M.S., Sabattini, M.S., Virulencia diferencial de cepas de virus Junín por marcadores Biológicos en ratones y cobayos (1977) Medicina (Buenos Aires), 37, pp. 244-251
  • Sanchez, A., Pifat, D.Y., Kenyon, R.H., Junín virus monoclonal antibodies: characterization and cross-reactivity with other arenaviruses (1989) J. Gen. Virol., 70, pp. 1125-1132
  • Keller, P., Simons, K., Cholesterol is required for surface transport of influenza virus hemagglutinin (1998) Cell. Biol., 140, pp. 1357-1367
  • Igal, R.A., Caviglia, J.M., de Gómez Dumm, I.N., Diacylglycerol generated in CHO cell plasma membrane by phospholipase C is used for triacylglycerol synthesis (2001) J. Lipid Res., 42, pp. 88-95
  • Astruc, M., Laporte, M., Tabacik, C., Effect of oxygenated sterols on 3-hydroxy-3-methylglutaryl coenzyme a reductase and DNA synthesis in phytohemagglutinin-stimulated human lymphocytes (1978) Biochem. Biophys. Res. Commun., 85, pp. 691-700
  • Alberts, A.W., Chen, J., Kuron, G., Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme a reductase and a cholesterol-lowering agent (1980) Proc. Natl. Acad. Sci. USA, 77, pp. 3957-3961
  • Neufeld, E.B., Cooney, A.M., Pitha, J., Intracellular trafficking of cholesterol monitored with a cyclodextrin (1996) J. Biol. Chem., 71, pp. 21604-21613
  • Zhang, J., Lesser, G.P., Pekosz, A., Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins (2000) J. Virol., 74, pp. 4634-4644
  • Simons, K., Vaz, W.L., Model systems, lipid rafts, and cell membranes (2004) Annu. Rev. Biophys. Biomol. Struct., 33, pp. 269-295
  • Urata, S., Yasuda, J., de la Torre, J.C., The Z protein of the new world arenavirus tacaribe virus has bona fide budding activity that does not depend on known late domain motifs (2009) J. Virol., 83, pp. 12651-12655
  • Schlie, K., Maisa, A., Lennartz, F., Characterization of lassa virus glycoprotein oligomerization and influence of cholesterol on virus replication (2010) J. Virol., 84, pp. 983-992
  • Agnihothram, S., Dancho, B., Grant, K.W., Assembly of arenavirus envelope glycoprotein GPC in detergent-soluble membrane microdomains (2009) J. Virol., 83, pp. 9890-9900
  • London, E., How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells (2005) Biochim. Biophys. Acta, 1746, pp. 203-220
  • Harder, T., Scheiffele, P., Verkade, P., Lipid domain structure of the plasma membrane revealed by patching of membrane components (1998) J. Cell Biol., 141, pp. 929-942

Citas:

---------- APA ----------
Cordo, S.M., Valko, A., Martinez, G.M. & Candurra, N.A. (2013) . Membrane localization of Junín virus glycoproteins requires cholesterol and cholesterol rich membranes. Biochemical and Biophysical Research Communications, 430(3), 912-917.
http://dx.doi.org/10.1016/j.bbrc.2012.12.053
---------- CHICAGO ----------
Cordo, S.M., Valko, A., Martinez, G.M., Candurra, N.A. "Membrane localization of Junín virus glycoproteins requires cholesterol and cholesterol rich membranes" . Biochemical and Biophysical Research Communications 430, no. 3 (2013) : 912-917.
http://dx.doi.org/10.1016/j.bbrc.2012.12.053
---------- MLA ----------
Cordo, S.M., Valko, A., Martinez, G.M., Candurra, N.A. "Membrane localization of Junín virus glycoproteins requires cholesterol and cholesterol rich membranes" . Biochemical and Biophysical Research Communications, vol. 430, no. 3, 2013, pp. 912-917.
http://dx.doi.org/10.1016/j.bbrc.2012.12.053
---------- VANCOUVER ----------
Cordo, S.M., Valko, A., Martinez, G.M., Candurra, N.A. Membrane localization of Junín virus glycoproteins requires cholesterol and cholesterol rich membranes. Biochem. Biophys. Res. Commun. 2013;430(3):912-917.
http://dx.doi.org/10.1016/j.bbrc.2012.12.053