Artículo

Fernández, M.L.; Risk, M.; Reigada, R.; Vernier, P.T. "Size-controlled nanopores in lipid membranes with stabilizing electric fields" (2012) Biochemical and Biophysical Research Communications. 423(2):325-330
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Molecular dynamics (MD) has been shown to be a useful tool for unveiling many aspects of pore formation in lipid membranes under the influence of an applied electric field. However, the study of the structure and transport properties of electropores by means of MD has been hampered by difficulties in the maintenance of a stable electropore in the typically small simulated membrane patches. We describe a new simulation scheme in which an initially larger porating field is systematically reduced after pore formation to lower stabilizing values to produce stable, size-controlled electropores, which can then be characterized at the molecular level. A new method allows the three-dimensional modeling of the irregular shape of the pores obtained as well as the quantification of its volume. The size of the pore is a function of the value of the stabilizing field. At lower fields the pore disappears and the membrane recovers its normal shape, although in some cases long-lived, fragmented pores containing unusual lipid orientations in the bilayer are observed. © 2012 Elsevier Inc.

Registro:

Documento: Artículo
Título:Size-controlled nanopores in lipid membranes with stabilizing electric fields
Autor:Fernández, M.L.; Risk, M.; Reigada, R.; Vernier, P.T.
Filiación:Laboratorio de Sistemas Complejos, Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Area de Bioingeniería, Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
Dept. de Quimica Fisica, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
Palabras clave:Electric field; Electroporation; Lipid membrane; Molecular dynamics; Stable size-controlled Pores; article; channel gating; controlled study; electric field; limit of quantitation; molecular model; nanopore; phospholipid bilayer; priority journal; simulation; Electricity; Electromagnetic Fields; Lipid Bilayers; Molecular Dynamics Simulation; Nanopores
Año:2012
Volumen:423
Número:2
Página de inicio:325
Página de fin:330
DOI: http://dx.doi.org/10.1016/j.bbrc.2012.05.122
Título revista:Biochemical and Biophysical Research Communications
Título revista abreviado:Biochem. Biophys. Res. Commun.
ISSN:0006291X
CODEN:BBRCA
CAS:Lipid Bilayers
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0006291X_v423_n2_p325_Fernandez

Referencias:

  • Neumann, E., Kakorin, S., Toensing, K., Fundamentals of electroporative delivery of drugs and genes (1999) Bioelectrochem. Bioenerg., 48, pp. 3-16
  • Tsong, T.Y., Electroporation of cell membranes (1991) Biophys. J., 60, pp. 297-306
  • Belehradek, M., Domenge, C., Luboinski, B., Orlowski, S., Belehradek, J., Mir, L.M., Electrochemotherapy, a new antitumor treatment (1993) Cancer, 72, pp. 3694-3700
  • Tieleman, D.P., The molecular basis of electroporation (2004) BMC Biochem., 5, p. 10
  • Tarek, M., Membrane electroporation: a molecular dynamics study (2005) Biophys. J., 88, pp. 4045-4053
  • Ziegler, M.J., Vernier, P.T., Interface water dynamics and porating electric fields for phospholipid bilayers (2008) J. Phys. Chem. B, 112, pp. 13588-13596
  • Levine, Z.A., Vernier, P.T., Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation (2010) J. Membr. Biol., 236, pp. 27-36
  • Fernández, M.L., Marshall, G., Sagués, F., Reigada, R., Structural and kinetic molecular dynamics study of electroporation in colesterol-containing bilayers (2010) J. Phys. Chem. B, 114, pp. 6855-6865
  • Pakhomov, A.G., Kolb, J.F., White, J.A., Joshi, R.P., Xiao, S., Schoenbach, K.H., Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF) (2007) Bioelectromagnetics, 28, pp. 655-663
  • Böckmann, R.A., de Groot, B.L., Kakorin, S., Neumann, E., Grubmüller, H., Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations (2008) Biophys. J., 95, pp. 1837-1850
  • Piggot, T.J., Holdbrook, D.A., Khalid, S., Electroporation of the E. coli and S. Aureus membranes: molecular dynamics simulations of complex bacterial membranes (2011) J. Phys. Chem. B., 115, pp. 13381-13388
  • Ohvo-Rekilä, H., Ramstedt, B., Leppimäki, P., Slotte, J.P., Cholesterol interactions with phospholipids in membranes (2002) Prog. Lipid Res., 41, pp. 66-97
  • Lindahl, E., Hess, B., van der Spoel, D., GROMACS 3.0: a package for molecular simulation and trajectory analysis (2001) J. Mol. Model., 7, pp. 306-317
  • Berger, O., Edholm, O., Jahnig, F., Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature (1997) Biophys. J., 72, pp. 2002-2013
  • Tieleman, D.P., Berendsen, H.J.C., Molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters (1996) J. Chem. Phys., 105, pp. 4871-4880
  • Bachar, M., Brunelle, P., Tieleman, D.P., Rauk, A., Molecular dynamics simulation of a polyunsaturated lipid bilayer susceptible to lipid peroxidation (2004) J. Phys. Chem. B, 108, pp. 7170-7179
  • Martinez-Seara, H., Róg, T., Karttunen, M., Reigada, R., Vattulainen, I., Influence of cis double-bond parametrization on lipid membrane properties: how seemingly insignificant details in force-field change even qualitative trends (2008) J. Chem. Phys., 129, p. 105103
  • Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Hermans, J., Interaction models for water in relation to protein hydration (1981) Intermolecular Forces, pp. 331-342. , Reidel, Dordrecht, The Netherlands, B. Pullman (Ed.)
  • Holtje, M., Forster, T., Brandt, B., Engels, T., von Rybinski, W., Holtje, H.-D., Molecular dynamics simulations of stratum corneum lipid models: fatty acids and cholesterol (2001) Biochim. Biophys. Acta, 1511, pp. 156-167
  • Miyamoto, S., Kollman, P.A., SETTLE: an analytical version of the SHAKE and RATTLE algorithms for rigid water models (1992) J. Comp. Chem., 13, pp. 952-962
  • Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M., LINCS: a linear constraint solver for molecular simulations (1997) J. Comput. Chem., 18, pp. 1463-1472
  • Essman, U., Perera, L., Berkowitz, M.L., Darden, H.L.T., L.G.A Pedersen, smooth particle mesh Ewald method (1995) J. Chem. Phys., 103, pp. 8577-8592
  • Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R., Molecular dynamics with coupling to an external bath (1984) J. Chem. Phys., 81, pp. 3684-3690
  • Martinez-Seara, H., Róg, T., Pasenkiewicz-Gierula, M., Vattulainen, I., Karttunen, M., Reigada, R., Effect of double bond position on lipid bilayer properties: insight through atomistic simulations (2007) J. Phys. Chem. B., 111, pp. 11162-11168
  • Martinez-Seara, H., Róg, T., Pasenkiewicz-Gierula, M., Vattulainen, I., Karttunen, M., Reigada, R., Interplay of unsaturated phospholipids and cholesterol in membranes: effect of the double-bond position (2008) Biophys. J., 95, pp. 3295-3305
  • Humphrey, W., Dalke, A., Schulten, K., VMD - Visual Molecular Dynamics (1996) J. Molec. Graphics., 14, pp. 33-38. , http://www.ks.uiuc.edu/Research/vmd/
  • http://www.python.org; (2011), R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0

Citas:

---------- APA ----------
Fernández, M.L., Risk, M., Reigada, R. & Vernier, P.T. (2012) . Size-controlled nanopores in lipid membranes with stabilizing electric fields. Biochemical and Biophysical Research Communications, 423(2), 325-330.
http://dx.doi.org/10.1016/j.bbrc.2012.05.122
---------- CHICAGO ----------
Fernández, M.L., Risk, M., Reigada, R., Vernier, P.T. "Size-controlled nanopores in lipid membranes with stabilizing electric fields" . Biochemical and Biophysical Research Communications 423, no. 2 (2012) : 325-330.
http://dx.doi.org/10.1016/j.bbrc.2012.05.122
---------- MLA ----------
Fernández, M.L., Risk, M., Reigada, R., Vernier, P.T. "Size-controlled nanopores in lipid membranes with stabilizing electric fields" . Biochemical and Biophysical Research Communications, vol. 423, no. 2, 2012, pp. 325-330.
http://dx.doi.org/10.1016/j.bbrc.2012.05.122
---------- VANCOUVER ----------
Fernández, M.L., Risk, M., Reigada, R., Vernier, P.T. Size-controlled nanopores in lipid membranes with stabilizing electric fields. Biochem. Biophys. Res. Commun. 2012;423(2):325-330.
http://dx.doi.org/10.1016/j.bbrc.2012.05.122