Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Yeast cells are able to adapt their metabolism according to the quality of both carbon and nitrogen sources available in the environment. Saccharomyces cerevisiae UGA4 gene encodes a permease capable of transporting γ-aminobutyric acid (GABA) into the cells. Yeast uses this amino acid as a nitrogen source or as a carbon skeleton that enters the tricarboxylic acid cycle.The quality of the carbon source modulates UGA4 expression through two parallel pathways, each one acting on different regulatory elements, the UAS GATA and the UAS GABA. In the presence of a fermentable carbon source, UGA4 expression is induced by GABA while in the presence of a non-fermentable carbon source this expression is GABA-independent.The aim of this work was to study the mechanisms responsible for the differences in the profiles of UGA4 expression in both growth conditions.We found that although the subcellular localization of Gln3 depends on the carbon source and UGA4 expression depends on Tor1 and Snf1, Gln3 localization does not depend on these kinases. We also found that the phosphorylation of Gln3 is mediated by two systems activated by a non-fermentable carbon source, involving the Snf1 kinase and an unidentified TORC1-regulated kinase.We also found that the activity of the main transcription factors responsible for UGA4 induction by GABA varies depending on the quality of the carbon source. In a fermentable carbon source such as glucose, the negative GATA factor Dal80 binds to UGA4 promoter; only after the addition of the inducer, the positive factors Uga3, Dal81 and Gln3 interact with the promoter removing Dal80 and leading to gene induction. In contrast, in the non-fermentable carbon source acetate the negative GATA factor remains bound to UGA4 promoter in the presence or absence of GABA, the positive factors are not detected bound in any of these conditions and in consequence, UGA4 is not induced. © 2012 Elsevier Inc.

Registro:

Documento: Artículo
Título:GABA induction of the Saccharomyces cerevisiae UGA4 gene depends on the quality of the carbon source: Role of the key transcription factors acting in this process
Autor:Levi, C.E.; Cardillo, S.B.; Bertotti, S.; Ríos, C.; Correa García, S.; Moretti, M.B.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Instituto de Investigaciones Biotecnológicas (IIB/INTECH), Universidad Nacional de General San Martín (UNSAM), Buenos Aires, Argentina
Palabras clave:Carbon regulation; Dal81; GATA factors; Kinases; Uga3; UGA4; 4 aminobutyric acid; carbon; fungal protein; transcription factor; uga4 protein; unclassified drug; article; carbon source; gene induction; nonhuman; priority journal; protein expression; protein localization; protein phosphorylation; Saccharomyces cerevisiae; Carbon; DNA-Binding Proteins; Fermentation; GABA Plasma Membrane Transport Proteins; gamma-Aminobutyric Acid; Gene Expression Regulation, Developmental; Gene Expression Regulation, Fungal; Glucose; Phosphatidylinositol 3-Kinases; Promoter Regions, Genetic; Protein-Serine-Threonine Kinases; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Transcription Factors; Saccharomyces cerevisiae
Año:2012
Volumen:421
Número:3
Página de inicio:572
Página de fin:577
DOI: http://dx.doi.org/10.1016/j.bbrc.2012.04.047
Título revista:Biochemical and Biophysical Research Communications
Título revista abreviado:Biochem. Biophys. Res. Commun.
ISSN:0006291X
CODEN:BBRCA
CAS:4 aminobutyric acid, 28805-76-7, 56-12-2; carbon, 7440-44-0; Carbon, 7440-44-0; DAL81 protein, S cerevisiae; DNA-Binding Proteins; GABA Plasma Membrane Transport Proteins; GLN3 protein, S cerevisiae; Glucose, 50-99-7; Phosphatidylinositol 3-Kinases, 2.7.1.-; Protein-Serine-Threonine Kinases, 2.7.11.1; SNF1-related protein kinases, 2.7.1.-; Saccharomyces cerevisiae Proteins; TOR1 protein, S cerevisiae, 2.7.1.137; Transcription Factors; UGA3 protein, S cerevisiae; UGA4 protein, S cerevisiae; gamma-Aminobutyric Acid, 56-12-2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0006291X_v421_n3_p572_Levi

Referencias:

  • Coffman, J.A., Rai, R., Loprete, D.M., Cunningham, T., Svetlov, V., Cooper, T.G., Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae (1997) J. Bacteriol., 179, pp. 3416-3429
  • Soussi-Boudekou, S., Vissers, S., Urrestarazu, A., Jauniaux, J.C., Andre, B., Gzf3p, a fourth GATA factor involved in nitrogen-regulated transcription in Saccharomyces cerevisiae (1997) Mol. Microbiol., 23, pp. 1157-1168
  • Luzzani, C., Cardillo, S.B., Bermudez Moretti, M., Correa Garcia, S., New insights into the regulation of the Saccharomyces cerevisiae UGA4 gene: two parallel pathways participate in carbon-regulated transcription (2007) Microbiology, 153, pp. 3677-3684
  • Bermudez Moretti, M., Correa Garcia, S., Ramos, E., Batlle, A., Delta-Aminolevulinic acid uptake is mediated by the gamma-aminobutyric acid-specific permease UGA4 (1996) Cell. Mol. Biol. (Noisy-le-grand), 42, pp. 519-523
  • Andre, B., Hein, C., Grenson, M., Jauniaux, J.C., Cloning and expression of the UGA4 gene coding for the inducible GABA-specific transport protein of Saccharomyces cerevisiae (1993) Mol. Gen. Genet., 237, pp. 17-25
  • Bricmont, P.A., Daugherty, J.R., Cooper, T.G., The DAL81 gene product is required for induced expression of two differently regulated nitrogen catabolic genes in Saccharomyces cerevisiae (1991) Mol. Cell. Biol., 11, pp. 1161-1166
  • Andre, B., Talibi, D., Soussi Boudekou, S., Hein, C., Vissers, S., Coornaert, D., Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5'-GAT(A/T)A-3' upstream from the UGA4 gene of Saccharomyces cerevisiae (1995) Nucleic Acids Res., 23, pp. 558-564
  • Cardillo, S.B., Bermudez Moretti, M., Correa Garcia, S., Uga3 and Uga35/Dal81 transcription factors regulate UGA4 transcription in response to gamma-aminobutyric acid and leucine (2010) Eukaryotic Cell, 9, pp. 1262-1271
  • Cardillo, S.B., Levi, C.E., Bermudez Moretti, M., Correa Garcia, S., Interplay between the transcription factors acting on the GATA- and GABA-responsive elements of Saccharomyces cerevisiae UGA promoters (2012) Microbiology, 158, pp. 925-935
  • Andre, B., An overview of membrane transport proteins in Saccharomyces cerevisiae (1995) Yeast, 11, pp. 1575-1611
  • Cunningham, T.S., Dorrington, R.A., Cooper, T.G., The UGA4 UASNTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsive regulation and DAL80 protein binding in Saccharomyces cerevisiae (1994) J. Bacteriol., 176, pp. 4718-4725
  • Georis, I., Feller, A., Vierendeels, F., Dubois, E., The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repression-sensitive gene activation (2009) Mol. Cell. Biol., 29, pp. 3803-3815
  • Cox, K.H., Kulkarni, A., Tate, J.J., Cooper, T.G., Gln3 phosphorylation and intracellular localization in nutrient limitation and starvation differ from those generated by rapamycin inhibition of Tor1/2 in Saccharomyces cerevisiae (2004) J. Biol. Chem., 279, pp. 10270-10278
  • Beck, T., Hall, M.N., The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors (1999) Nature, 402, pp. 689-692
  • Santangelo, G.M., Glucose signaling in Saccharomyces cerevisiae (2006) Microbiol. Mol. Biol. Rev., 70, pp. 253-282
  • Hedbacker, K., Carlson, M., SNF1/AMPK pathways in yeast (2008) Front. Biosci., 13, pp. 2408-2420
  • Orlova, M., Kanter, E., Krakovich, D., Kuchin, S., Nitrogen availability and TOR regulate the Snf1 protein kinase in Saccharomyces cerevisiae (2006) Eukaryotic Cell, 5, pp. 1831-1837
  • Bertram, P.G., Choi, J.H., Carvalho, J., Chan, T.F., Ai, W., Zheng, X.F., Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3 (2002) Mol. Cell. Biol., 22, pp. 1246-1252
  • Wach, A., Brachat, A., Pohlmann, R., Philippsen, P., New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae (1994) Yeast, 10, pp. 1793-1808
  • Wach, A., PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae (1996) Yeast, 12, pp. 259-265
  • Longtine, M.S., McKenzie, A., Demarini, D.J., Shah, N.G., Wach, A., Brachat, A., Philippsen, P., Pringle, J.R., Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae (1998) Yeast, 14, pp. 953-961
  • Gietz, R.D., Woods, R.A., Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method (2002) Methods Enzymol., 350, pp. 87-96
  • Gelperin, D.M., White, M.A., Wilkinson, M.L., Kon, Y., Kung, L.A., Wise, K.J., Lopez-Hoyo, N., Grayhack, E.J., Biochemical and genetic analysis of the yeast proteome with a movable ORF collection (2005) Genes Dev., 19, pp. 2816-2826
  • Liu, Z., Thornton, J., Spirek, M., Butow, R.A., Activation of the SPS amino acid-sensing pathway in Saccharomyces cerevisiae correlates with the phosphorylation state of a sensor component, Ptr3 (2008) Mol. Cell. Biol., 28, pp. 551-563
  • Tate, J.J., Georis, I., Dubois, E., Cooper, T.G., Distinct phosphatase requirements and GATA factor responses to nitrogen catabolite repression and rapamycin treatment in Saccharomyces cerevisiae (2010) J. Biol. Chem., 285, pp. 17880-17895
  • Tate, J.J., Georis, I., Feller, A., Dubois, E., Cooper, T.G., Rapamycin-induced Gln3 dephosphorylation is insufficient for nuclear localization: Sit4 and PP2A phosphatases are regulated and function differently (2009) J. Biol. Chem., 284, pp. 2522-2534
  • Cardillo, S.B., Correa Garcia, S., Bermudez Moretti, M., Common features and differences in the expression of the three genes forming the UGA regulon in Saccharomyces cerevisiae (2011) Biochem. Biophys. Res. Commun., 410, pp. 885-889
  • Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method (2001) Methods, 25, pp. 402-408
  • Kulkarni, A., Buford, T.D., Rai, R., Cooper, T.G., Differing responses of Gat1 and Gln3 phosphorylation and localization to rapamycin and methionine sulfoximine treatment in Saccharomyces cerevisiae (2006) FEMS Yeast Res., 6, pp. 218-229
  • Tate, J.J., Rai, R., Cooper, T.G., Methionine sulfoximine treatment and carbon starvation elicit Snf1-independent phosphorylation of the transcription activator Gln3 in Saccharomyces cerevisiae (2005) J. Biol. Chem., 280, pp. 27195-27204
  • Kuruvilla, F.G., Shamji, A.F., Schreiber, S.L., Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 7283-7288
  • Andre, B., The UGA3 gene regulating the GABA catabolic pathway in Saccharomyces cerevisiae codes for a putative zinc-finger protein acting on RNA amount (1990) Mol. Gen. Genet., 220, pp. 269-276
  • Ingrell, C.R., Miller, M.L., Jensen, O.N., Blom, N., NetPhosYeast: prediction of protein phosphorylation sites in yeast (2007) Bioinformatics, 23, pp. 895-897

Citas:

---------- APA ----------
Levi, C.E., Cardillo, S.B., Bertotti, S., Ríos, C., Correa García, S. & Moretti, M.B. (2012) . GABA induction of the Saccharomyces cerevisiae UGA4 gene depends on the quality of the carbon source: Role of the key transcription factors acting in this process. Biochemical and Biophysical Research Communications, 421(3), 572-577.
http://dx.doi.org/10.1016/j.bbrc.2012.04.047
---------- CHICAGO ----------
Levi, C.E., Cardillo, S.B., Bertotti, S., Ríos, C., Correa García, S., Moretti, M.B. "GABA induction of the Saccharomyces cerevisiae UGA4 gene depends on the quality of the carbon source: Role of the key transcription factors acting in this process" . Biochemical and Biophysical Research Communications 421, no. 3 (2012) : 572-577.
http://dx.doi.org/10.1016/j.bbrc.2012.04.047
---------- MLA ----------
Levi, C.E., Cardillo, S.B., Bertotti, S., Ríos, C., Correa García, S., Moretti, M.B. "GABA induction of the Saccharomyces cerevisiae UGA4 gene depends on the quality of the carbon source: Role of the key transcription factors acting in this process" . Biochemical and Biophysical Research Communications, vol. 421, no. 3, 2012, pp. 572-577.
http://dx.doi.org/10.1016/j.bbrc.2012.04.047
---------- VANCOUVER ----------
Levi, C.E., Cardillo, S.B., Bertotti, S., Ríos, C., Correa García, S., Moretti, M.B. GABA induction of the Saccharomyces cerevisiae UGA4 gene depends on the quality of the carbon source: Role of the key transcription factors acting in this process. Biochem. Biophys. Res. Commun. 2012;421(3):572-577.
http://dx.doi.org/10.1016/j.bbrc.2012.04.047