Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The three genes that form the UGA regulon in Saccharomyces cerevisiae are responsible for the transport and degradation of γ-aminobutyric acid (GABA) in this organism. Despite the differences in the sequence of their promoters, these genes similarly respond to GABA stimuli. The expression of UGA1, UGA2 and UGA4 depends on GABA induction and nitrogen catabolite repression (NCR). The induction of these genes requires the action of at least two positive proteins, the specific Uga3 and the pleiotropic Uga35/Dal81 transcription factors. Here we show that all the members of the UGA regulon, as was already demonstrated for UGA4, are negatively regulated by extracellular amino acids through the SPS amino acid sensor. We also show that this negative effect is caused by a low availability of Uga35/Dal81 transcription factor and that Leu3 transcription factor negatively regulates UGA4 and UGA1 expression but it does not affect UGA2 expression. © 2011 Elsevier Inc.

Registro:

Documento: Artículo
Título:Common features and differences in the expression of the three genes forming the UGA regulon in Saccharomyces cerevisiae
Autor:Cardillo, S.B.; Correa García, S.; Bermúdez Moretti, M.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
Palabras clave:Leu3; SPS amino acid sensor; UGA regulon; Uga35/Dal81; 4 aminobutyric acid; amino acid; transcription factor; transcription factor Leu3; transcription factor UGA1; transcription factor UGA2; transcription factor UGA3; transcription factor UGA4; transcription factor UGA5; unclassified drug; article; gene control; gene expression; gene induction; gene sequence; nitrogen catabolite repression; nonhuman; priority journal; protein processing; regulon; Saccharomyces cerevisiae; 4-Aminobutyrate Transaminase; Down-Regulation; GABA Plasma Membrane Transport Proteins; Gene Expression Regulation, Fungal; Leucine; Regulon; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Succinate-Semialdehyde Dehydrogenase (NADP+); Trans-Activators; Transcription Factors; Saccharomyces cerevisiae
Año:2011
Volumen:410
Número:4
Página de inicio:885
Página de fin:889
DOI: http://dx.doi.org/10.1016/j.bbrc.2011.06.086
Título revista:Biochemical and Biophysical Research Communications
Título revista abreviado:Biochem. Biophys. Res. Commun.
ISSN:0006291X
CODEN:BBRCA
CAS:4 aminobutyric acid, 28805-76-7, 56-12-2; amino acid, 65072-01-7; 4-Aminobutyrate Transaminase, 2.6.1.19; DAL81 protein, S cerevisiae; GABA Plasma Membrane Transport Proteins; LEU3 protein, S cerevisiae; Leucine, 61-90-5; Saccharomyces cerevisiae Proteins; Succinate-Semialdehyde Dehydrogenase (NADP+), 1.2.1.16; Trans-Activators; Transcription Factors; UGA1 protein, S. cerevisiae, 2.6.1.19; UGA2 protein, S cerevisiae, 1.2.1.16; UGA4 protein, S cerevisiae
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0006291X_v410_n4_p885_Cardillo

Referencias:

  • Magasanik, B., Kaiser, C.A., Nitrogen regulation in Saccharomyces cerevisiae (2002) Gene, 290, pp. 1-18
  • Ramos, F., el Guezzar, M., Grenson, M., Wiame, J.M., Mutations affecting the enzymes involved in the utilization of 4-aminobutyric acid as nitrogen source by the yeast Saccharomyces cerevisiae (1985) Eur. J. Biochem., 149, pp. 401-404
  • Grenson, M., 4-Aminobutyric acid (GABA) uptake in Baker's yeast Saccharomyces cerevisiae is mediated by the general amino acid permease, the proline permease and a GABA specific permease integrated into the GABA-catabolic pathway (1987) Life Sci. Adv. Biochem., 6, pp. 35-39
  • Andre, B., Jauniaux, J.C., Nucleotide sequence of the yeast UGA1 gene encoding GABA transaminase (1990) Nucleic Acids Res., 18, p. 3049
  • Coleman, S.T., Fang, T.K., Rovinsky, S.A., Turano, F.J., Moye-Rowley, W.S., Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae (2001) J. Biol. Chem., 276, pp. 244-250
  • Coffman, J., Rai, R., Cunningham, T., Svetlov, V., Cooper, T.G., NCR-sensitive transport gene expression in S. cerevisiae is controlled by a branched regulatory pathway consisting of multiple NCR-responsive activator proteins (1996) Folia Microbiol. (Praha), 41, pp. 85-86
  • Vissers, S., Andre, B., Muyldermans, F., Grenson, M., Positive and negative regulatory elements control the expression of the UGA4 gene coding for the inducible 4-aminobutyric-acid-specific permease in Saccharomyces cerevisiae (1989) Eur. J. Biochem., 181, pp. 357-361
  • Andre, B., Talibi, D., Soussi Boudekou, S., Hein, C., Vissers, S., Coornaert, D., Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5'-GAT(A/T)A-3' upstream from the UGA4 gene of Saccharomyces cerevisiae (1995) Nucleic Acids Res., 23, pp. 558-564
  • Cunningham, T.S., Dorrington, R.A., Cooper, T.G., The UGA4 UASNTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsive regulation and DAL80 protein binding in Saccharomyces cerevisiae (1994) J. Bacteriol., 176, pp. 4718-4725
  • Talibi, D., Grenson, M., Andre, B., Cis- and trans-acting elements determining induction of the genes of the gamma-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae (1995) Nucleic Acids Res., 23, pp. 550-557
  • Idicula, A.M., Binding and Transcriptional Activation by Uga3p, a Zinc Binuclear Cluster Protein of Saccharomyces cerevisiae (2002), Redefining the UASGABA and the Uga3p Binding Site, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University; Idicula, A.M., Blatch, G.L., Cooper, T.G., Dorrington, R.A., Binding and activation by the zinc cluster transcription factors of Saccharomyces cerevisiae. Redefining the UASGABA and its interaction with Uga3p (2002) J. Biol. Chem., 277, pp. 45977-45983
  • Forsberg, H., Ljungdahl, P.O., Genetic and biochemical analysis of the yeast plasma membrane Ssy1p-Ptr3p-Ssy5p sensor of extracellular amino acids (2001) Mol. Cell. Biol., 21, pp. 814-826
  • Andreasson, C., Ljungdahl, P.O., Receptor-mediated endoproteolytic activation of two transcription factors in yeast (2002) Genes Dev., 16, pp. 3158-3172
  • Abdel-Sater, F., Iraqui, I., Urrestarazu, A., Andre, B., The external amino acid signaling pathway promotes activation of Stp1 and Uga35/Dal81 transcription factors for induction of the AGP1 gene in Saccharomyces cerevisiae (2004) Genetics, 166, pp. 1727-1739
  • Andreasson, C., Heessen, S., Ljungdahl, P.O., Regulation of transcription factor latency by receptor-activated proteolysis (2006) Genes Dev., 20, pp. 1563-1568
  • de Boer, M., Nielsen, P.S., Bebelman, J.P., Heerikhuizen, H., Andersen, H.A., Planta, R.J., Stp1p, Stp2p and Abf1p are involved in regulation of expression of the amino acid transporter gene BAP3 of Saccharomyces cerevisiae (2000) Nucleic Acids Res., 28, pp. 974-981
  • Bernard, F., Andre, B., Ubiquitin and the SCF(Grr1) ubiquitin ligase complex are involved in the signalling pathway activated by external amino acids in Saccharomyces cerevisiae (2001) FEBS Lett., 496, pp. 81-85
  • Iraqui, I., Vissers, S., Bernard, F., de Craene, J.O., Boles, E., Urrestarazu, A., Andre, B., Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-Box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease (1999) Mol. Cell. Biol., 19, pp. 989-1001
  • Boban, M., Ljungdahl, P.O., Dal81 enhances Stp1- and Stp2-dependent transcription necessitating negative modulation by inner nuclear membrane protein Asi1 in Saccharomyces cerevisiae (2007) Genetics, 176, pp. 2087-2097
  • Bermudez Moretti, M., Perullini, A.M., Batlle, A., Correa Garcia, S., Expression of the UGA4 gene encoding the delta-aminolevulinic and gamma-aminobutyric acids permease in Saccharomyces cerevisiae is controlled by amino acid-sensing systems (2005) Arch. Microbiol., 184, pp. 137-140
  • Cardillo, S.B., Bermudez Moretti, M., Correa Garcia, S., Uga3 and Uga35/Dal81 transcription factors regulate UGA4 transcription in response to gamma-aminobutyric acid and leucine (2010) Eukaryot. Cell, 9, pp. 1262-1271
  • Friden, P., Schimmel, P., LEU3 of Saccharomyces cerevisiae activates multiple genes for branched-chain amino acid biosynthesis by binding to a common decanucleotide core sequence (1988) Mol. Cell. Biol., 8, pp. 2690-2697
  • Zhou, K.M., Kohlhaw, G.B., Transcriptional activator LEU3 of yeast. Mapping of the transcriptional activation function and significance of activation domain tryptophans (1990) J. Biol. Chem., 265, pp. 17409-17412
  • Nielsen, P.S., van den Hazel, B., Didion, T., de Boer, M., Jorgensen, M., Planta, R.J., Kielland-Brandt, M.C., Andersen, H.A., Transcriptional regulation of the Saccharomyces cerevisiae amino acid permease gene BAP2 (2001) Mol. Gen. Genet., 264, pp. 613-622
  • Hu, Y., Cooper, T.G., Kohlhaw, G.B., The Saccharomyces cerevisiae Leu3 protein activates expression of GDH1, a key gene in nitrogen assimilation (1995) Mol. Cell. Biol., 15, pp. 52-57
  • Jacobs, P., Jauniaux, J.C., Grenson, M., A cis-dominant regulatory mutation linked to the argB-argC gene cluster in Saccharomyces cerevisiae (1980) J. Mol. Biol., 139, pp. 691-704
  • Mumberg, D., Muller, R., Funk, M., Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds (1995) Gene, 156, pp. 119-122
  • Schmitt, M.E., Brown, T.A., Trumpower, B.L., A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae (1990) Nucleic Acids Res., 18, pp. 3091-3092
  • Harbison, C.T., Gordon, D.B., Lee, T.I., Rinaldi, N.J., Macisaac, K.D., Danford, T.W., Hannett, N.M., Young, R.A., Transcriptional regulatory code of a eukaryotic genome (2004) Nature, 431, pp. 99-104
  • Andre, B., The UGA3 gene regulating the GABA catabolic pathway in Saccharomyces cerevisiae codes for a putative zinc-finger protein acting on RNA amount (1990) Mol. Gen. Genet., 220, pp. 269-276
  • Bechet, J., Greenson, M., Wiame, J.M., Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae (1970) Eur. J. Biochem., 12, pp. 31-39

Citas:

---------- APA ----------
Cardillo, S.B., Correa García, S. & Bermúdez Moretti, M. (2011) . Common features and differences in the expression of the three genes forming the UGA regulon in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 410(4), 885-889.
http://dx.doi.org/10.1016/j.bbrc.2011.06.086
---------- CHICAGO ----------
Cardillo, S.B., Correa García, S., Bermúdez Moretti, M. "Common features and differences in the expression of the three genes forming the UGA regulon in Saccharomyces cerevisiae" . Biochemical and Biophysical Research Communications 410, no. 4 (2011) : 885-889.
http://dx.doi.org/10.1016/j.bbrc.2011.06.086
---------- MLA ----------
Cardillo, S.B., Correa García, S., Bermúdez Moretti, M. "Common features and differences in the expression of the three genes forming the UGA regulon in Saccharomyces cerevisiae" . Biochemical and Biophysical Research Communications, vol. 410, no. 4, 2011, pp. 885-889.
http://dx.doi.org/10.1016/j.bbrc.2011.06.086
---------- VANCOUVER ----------
Cardillo, S.B., Correa García, S., Bermúdez Moretti, M. Common features and differences in the expression of the three genes forming the UGA regulon in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 2011;410(4):885-889.
http://dx.doi.org/10.1016/j.bbrc.2011.06.086