Artículo

Izmitli, A.; Schebor, C.; McGovern, M.P.; Reddy, A.S.; Abbott, N.L.; De Pablo, J.J. "Effect of trehalose on the interaction of Alzheimer's Aβ-peptide and anionic lipid monolayers" (2011) Biochimica et Biophysica Acta - Biomembranes. 1808(1):26-33
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The interaction of amyloid β-peptide (Aβ) with cell membranes is believed to play a central role in the pathogenesis of Alzheimer's disease. In particular, recent experimental evidence indicates that bilayer and monolayer membranes accelerate the aggregation and amyloid fibril formation rate of Aβ. Understanding that interaction could help develop therapeutic strategies for treatment of the disease. Trehalose, a disaccharide of glucose, has been shown to be effective in preventing the aggregation of numerous proteins. It has also been shown to delay the onset of certain amyloid-related diseases in a mouse model. Using Langmuir monolayers and molecular simulations of the corresponding system, we study several thermodynamic and kinetic aspects of the insertion of Aβ peptide into DPPG monolayers in water and trehalose subphases. In the water subphase, the insertion of the Aβ peptide into the monolayer exhibits a lag time which decreases with increasing temperature of the subphase. In the presence of trehalose, the lag time is completely eliminated and peptide insertion is completed within a shorter time period compared to that observed in pure water. Molecular simulations show that more peptide is inserted into the monolayer in the water subphase, and that such insertion is deeper. The peptide at the monolayer interface orients itself parallel to the monolayer, while it inserts with an angle of 50° in the trehalose subphase. Simulations also show that trehalose reduces the conformational change that the peptide undergoes when it inserts into the monolayer. This observation helps explain the experimentally observed elimination of the lag time by trehalose and the temperature dependence of the lag time in the water subphase. © 2010 Elsevier B.V.All rights reserved.

Registro:

Documento: Artículo
Título:Effect of trehalose on the interaction of Alzheimer's Aβ-peptide and anionic lipid monolayers
Autor:Izmitli, A.; Schebor, C.; McGovern, M.P.; Reddy, A.S.; Abbott, N.L.; De Pablo, J.J.
Filiación:Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, United States
Departmento de Industrias, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria Ciudad Automa de Buenos Aires, Argentina
Palabras clave:Alzheimer's disease; Amyloid beta peptide; Membrane; Monolayer; Trehalose; amyloid beta protein; lipid; trehalose; alpha helix; Alzheimer disease; animal cell; animal experiment; aqueous solution; article; cell membrane; controlled study; enzyme kinetics; isotherm; Langmuir Blodgett film; lipid monolayer; mouse; nonhuman; priority journal; protein conformation; protein function; protein interaction; protein structure; thermodynamics; water temperature; Alzheimer Disease; Amyloid beta-Peptides; Animals; Anions; Computer Simulation; Humans; Lipid Bilayers; Mice; Models, Molecular; Molecular Conformation; Peptides; Phosphatidylglycerols; Temperature; Time Factors; Trehalose
Año:2011
Volumen:1808
Número:1
Página de inicio:26
Página de fin:33
DOI: http://dx.doi.org/10.1016/j.bbamem.2010.09.024
Título revista:Biochimica et Biophysica Acta - Biomembranes
Título revista abreviado:Biochim. Biophys. Acta Biomembr.
ISSN:00052736
CODEN:BBBMB
CAS:amyloid beta protein, 109770-29-8; lipid, 66455-18-3; trehalose, 99-20-7; 1,2-dipalmitoylphosphatidylglycerol, 4537-77-3; Amyloid beta-Peptides; Anions; Lipid Bilayers; Peptides; Phosphatidylglycerols; Trehalose, 99-20-7
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00052736_v1808_n1_p26_Izmitli

Referencias:

  • Hardy, J., Amyloid, the presenilins and Alzheimer's disease (1997) Trends Neurosci., 20, pp. 154-159
  • Selkoe, D.J., Normal and abnormal biology of the β-amyloid precursor protein (1994) Annu. Rev. Neurosci., 17, pp. 489-517
  • Haas, C., Selkoe, D.J., Alzheimer's disease: A technical KO of amyloid-bold beta peptide (1998) Nature, 391, pp. 339-340
  • Cohen, F.D., Kelly, J.W., Therapeutic approaches to protein-misfolding diseases (2003) Nature, 426, pp. 905-909
  • Teplow, D.B., Structural and kinetic features of amyloid beta-protein fibrillogenesis (1998) Amyloid, 5
  • Walsh, D.M., Lomakin, A., Benedek, G.B., Condron, M.M., Teplow, D.B., Amyloid beta-protein fibrillogenesis - Detection of a protofibrillar intermediate (1997) J. Biol. Chem., 272, pp. 22364-22372
  • Gorbenko, G.P., Kinnunen, P.K.J., The role of lipid-protein interactions in amyloid-type protein fibril formation (2006) Chem. Phys. Lipids, 141, pp. 72-82
  • McLaurin, J., Yang, D.S., Yip, C.M., Fraser, P.E., Review: Modulating factors in amyloid-β fibril formation (2000) J. Struct. Biol., 130, pp. 259-270
  • Terzi, E., Hölzemann, G., Seelig, J., Self-association of β-amyloid peptide (1-40) in solution and binding to lipid membranes (1995) J. Mol. Biol., 252, pp. 633-642
  • Terzi, E., Hölzemann, G., Seelig, J., Interaction of Alzheimer β-amyloid peptide (1-40) with lipid membranes (1997) Biochemistry, 36, pp. 14845-14852
  • Koppaka, V., Axelsen, P.H., Accelerated accumulation of amyloid β proteins on oxidatively damaged lipid membranes (2000) Biochemistry, 36, pp. 10011-10016
  • McLaurin, J.A., Chakrabbartty, A., Characterization of the interactions of Alzheimer β-Amyloid peptides with phospholipid membranes (1997) Eur. J. Biochem., 245, pp. 355-363
  • Matsuzaki, K., Kato, K., Yanagisawa, K., A beta polymerization through interaction with membrane gangliosides (2010) BBA Mol. Cell. Biol. L., 1801, pp. 868-877
  • Brezesinski, G., Maltseva, E., Möhwald, H., Adsorption of amyloid β (1-40) peptide at liquid interfaces (2007) J. Phys. Chem., 221, pp. 95-111
  • Dante, S., Hauß, T., Brandt, A., Dencher, N.A., Externally administered amyloid β peptide 25-35 and perturbation of lipid bilayers (2003) Biochemistry, 42, pp. 13667-13672
  • Lin, H., Bhatia, L., Lal, R., Amyloid β protein forms ion channels: Implications for Alzheimer's disease pathology (2001) FASEB J., 15, pp. 2433-2444
  • Wildenbrandt, M.J.O., Rajadas, J., Sutardja, C., Fuller, G.G., Lipid-induced β-amyloid peptide assemblage fragmentation (2006) Biophys. J., 91, pp. 4071-4088
  • Thakur, G., Micic, M., Leblanc, R.M., Surface chemistry of Alzheimer's disease: A Langmuir monolayer approach (2009) Colloid Surf. B, 74, pp. 436-456
  • Caughey, C., Lansbury, P.T., Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders (2003) Annu. Rev. Neurosci., 26, pp. 267-298
  • Hirakura, Y., Kegan, B.L., Channel formation in the pathogenesis of Alzheimer's disease and other amyloidoses (1999) Einstein Q. J. Biol. Med., 16, pp. 124-129
  • Kawahara, M., Kuroda, Y., Alzheimer's amyloid β-protein forms Ca2+-permeable channels in neuronal cells and its aggregation is stimulated by aluminum (1997) J. Neurochem., 69, p. 46
  • Lin, H., Zhu, Y.W.J., Lal, R., Amyloid β protein (1-40) forms calcium-permeable, Zn2+-sensitive channel in reconstituted lipid vesicles (1999) Biochemistry, 38, pp. 11189-11196
  • De Planque, M.R.R., Raussens, V., Contera, S.A., Rijkers, D.T.S., Liskamp, R.M.J., Ruysschaert, J.M., Ryan, J.R., Watts, A., β-sheet structured β-amyloid(1-40) perturbs phosphatidylcholine model membranes (2007) J. Mol. Biol., 368, pp. 982-997
  • Ege, C., Lee, K.Y.C., Insertion of Alzheimer's Aβ40 peptide into lipid monolayers (2004) Biophys. J., 87, pp. 1732-1740
  • Kawasaki, T., Asaoka, K., Mihara, H., Okhata, Y., Nonfibrous β-structured aggregation of an Aβ model peptide (Ad-1α) on GM1/DPPC mixed monolayer surfaces (2006) J. Colloid Interface Sci., 294, pp. 295-303
  • Maltseva, E., Kerth, A., Blume, A., Möhwald, H., Brezesinski, G., Adsorption of amyloid β (1-40) peptide at phospholipid monolayers (2005) Chembiochem, 6, pp. 1817-1824
  • Chi, E.Y., Winans, A., Majewski, J., Wu, G., Kjaer, K., Lee, K.Y.C., Lipid membrane templates the ordering and induces the fibrillogenesis of Alzheimer's disease amyloid-β peptide (2008) Proteins, 72, pp. 1-24
  • Bang, O.Y., Hong, H.S., Kim, D.H., Kim, H., Boo, J.H., Huh, K., Mook-Jung, I., Neuroprotective effect of genistein against β amyloid-induced neurotoxicity (2004) Neurobiol. Dis., 16, pp. 21-28
  • Bergamaschini, L., Rossi, E., Storini, C., Pizzimenti, S., Distaso, M., Perego, C., De Luigi, A., De Simoni, M.G., Peripheral treatment with enoxaparin, a low molecular weight heparin, reduces plaques and β-amyloid accumulation in a mouse model of Alzheimer's disease (2004) J. Neurosci., 24, pp. 4181-4186
  • Li, J., Zhu, M., Manning-Bog, A.B., Di Monte, D.A., Fink, A.L., Dopamine and L-dopa disaggregate amyloid fibrils: Implications for Parkinson's and Alzheimer's disease (2004) FASEB J., 18, pp. 962-964
  • Nordberg, A., Hellstrom-Lindahl, E., Lee, M., Johnson, M., Mousavi, M., Hall, R., Perry, E., Court, J., Chronic nicotine treatment reduces β-amyloidosis in the brain of a mouse model of Alzheimer's disease (APPsw) (2002) J. Neurochem., 81, pp. 655-658
  • Ono, K., Hasegawa, K., Nakiki, H., Yamada, M., Curcumin has potent anti-amyloidogenic effects for Alzheimer's β-amyloid fibrils in vitro (2004) J. Neurosci. Res., 75, pp. 742-750
  • Podlisny, M.B., Walsh, D.M., Amarante, P., Ostazewski, B.L., Stimson, E.R., Maggio, J.E., Teplow, D.B., Selkoe, D.J., Oligomerization of endogenous and synthetic amyloid β-protein at nanomolar levels in cell culture and stabilization of monomer by Congo red (1998) Biochemistry, 37, pp. 3602-3611
  • Hindo, S.S., Mancino, A.M., Braymer, J.J., Liu, Y.H., Vivekanandan, S., Ramamoorthy, A., Lim, M.H., Small molecule modulator of copper-induced A beta aggregation (2009) J. Am. Chem. Soc., 131, pp. 16663-16665
  • Liu, R., Barkhordarian, H., Emadi, S., Park, C.B., Sierks, M.R., Trehalose differentially inhibits aggregation and neurotoxicity of β-amyloid 40 and 42 (2005) Neurobiol. Dis., 20, pp. 74-81
  • Miura, Y., You, C., Ohnishi, R., Inhibition of Alzheimer amyloid β aggregation by polyvalent trehalose (2008) Sci. Technol. Adv. Mat., 9, pp. 24407-24412
  • Arora, A., Ha, C., Park, C.B., Inhibition of insulin amyloid formation by small stress molecules (2004) FEBS Lett., 564, pp. 121-125
  • Tanaka, M., MacHida, Y., Niu, S., Ikeda, T., Jana, N.R., Doi, H., Kurosawa, M., Nukina, N., Trehalose alleviates polyglutamine-mediated gathology in a mouse model of Huntington disease (2004) Nat. Med., 10, pp. 148-154
  • Doxastakis, M., Sum, A.K., De Pablo, J.J., Modulating membrane properties: The effect of trehalose and cholesterol on a phospholipid bilayer (2005) J. Phys. Chem. B, 109, pp. 24173-24181
  • Ohtake, S., Schebor, C., Palecek, S.P., De Pablo, J.J., Phase behavior of freeze-dried phospholipid-cholesterol mixtures stabilized with trehalose (2005) BBA Biomembr., 1713, pp. 57-64
  • Ricker, J.V., Tsvetkova, N.M., Wolkers, W.F., Leidy, C., Tablin, F., Longo, M., Crowe, J.H., Trehalose maintains phase separation in an air-dried binary lipid mixture (2003) Biophys. J., 84, pp. 3045-3051
  • Reddy, A.S., Izmitli, A., De Pablo, J.J., Effect of trehalose on amyloid β (29-40)-membrane interaction (2009) J. Phys. Chem., 131
  • Blume, A., A comparative study of the phase transitions of phospholipid bilayers and monolayers (1979) Biochim. Biophys. Acta, 557, pp. 32-44
  • Yu, Z.W., Quinn, P.J., Solvation effects of dimethyl sulphoxide on the structure of phospholipid bilayers (1998) Biophys. J., 70, pp. 35-39
  • Sum, A.K., De Pablo, J.J., Molecular simulation study on the influence of dimethylsulfoxide on the structure of phospholipid bilayers (2003) Biophys. J., 85, pp. 3636-3645
  • Nanga, R.P.R., Brender, J.R., Xu, J., Veglia, G., Ramamoorthy, A., Structures of rat and human islet amyloid polypeptide IAPP1-19 in micelles by NMR spectroscopy (2008) Biochemistry, 47, pp. 12689-12697
  • Miyashita, N., Straub, J.E., Thirumalai, D., Structures of beta-amyloid peptide 1-40, 1-42, and 1-55 - The 672-726 fragment of APP - In a membrane environment with implications for interactions with gamma-secretase (2009) J. Am. Chem. Soc., 131, pp. 17843-17852
  • Lemkul, J.A., Revan, D.R., Perturbation of membranes by amyloid β peptide - A molecular dynamics study (2009) FEBS J., 276, pp. 3060-3075
  • Sum, A.K., Faller, R., De Pablo, J.J., Molecular simulation study of phospholipid bilayers and insights of the interactions with disaccharides (2003) Biophys. J., 85, pp. 2830-2844
  • Kandt, C., Ash, W.L., Tieleman, D.P., Setting up and running molecular dynamics simulations of membrane proteins (2007) Methods, 41, pp. 475-488
  • Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Hermans, J., (1981) Intermolecular Forces, pp. 331-342
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C., GROMACS: Fast, flexible, and free (2005) J. Comput. Chem., 26, pp. 1701-1718
  • Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M., LINCS: A linear constraint solver for molecular simulations (1997) J. Comput. Chem., 18, pp. 1463-1472
  • Bokvist, M., Lindstrom, F., Grobner, G., CD and NMR studies of aggregation of amyloid-β(1-40) peptide upon binding to model and raft membranes (2003) Biophys. J., 84, pp. 56A
  • Ji, S.-R., Wu, Y., Sui, S.-F., Cholesterol is an important factor affecting the membrane insertion of β-Amyloid peptide (Aβ1-40), which may potentially inhibit the fibril formation (2002) J. Biol. Chem., 277, pp. 6273-6279
  • Coles, M., Bicknell, W., Watson, A.A., Fairlie, D.P., Craik, D.J., Solution structure of amyloid β-peptide (1-40) in a water-micelle environment. Is the membrane-spanning domain where we think it is? (1998) Biochemistry, 37, pp. 11064-11077
  • Curtain, C.C., Ali, F.E., Smith, D.G., Bush, A.I., Masters, C.L., Barnham, K.J., Metal ions, pH, and cholesterol regulate the interactions of Alzheimer's disease amyloid-β peptide with membrane lipid (2003) J. Biol. Chem., 278, pp. 2977-2982
  • Izmitli, A., Schebor, C., De Pablo, J.J., Effect of Trehalose on the Interaction of Human Islet Amyloid Polypeptide with Anionic Lipid Monolayers and Membranes, , submitted for publication
  • Soong, R., Brender, J.R., MacDonald, P.M., Ramamoorthy, A., Association of highly compact type II diabetes related islet amyloid polypeptide intermediate species at physiological temperature revealed by diffusion NMR spectroscopy (2009) J. Am. Chem. Soc., 131, pp. 7079-7085
  • Reddy, A.S., Wang, L., Lin, Y.S., Ling, Y., Chopra, M., Zanni, M.T., Skinner, J.L., De Pablo, J.J., Solution structures of rat amylin peptide: Simulation, theory and experiment (2010) Biophys. J., 98, pp. 443-451
  • Reddy, A.S., Wang, L., Singh, S., Ling, Y.L., Buchanan, L., Zanni, M.T., Skinner, J.L., De Pablo, J.J., Stable and metastable states of human amylin in solution (2010) Biophys. J., 99
  • Marcinowski, K.J., Shao, H., Clancy, E.L., Zagorski, M.G., Solution structure model of residues 1-28 of the amyloid beta peptide when bound to micelles (1998) J. Am. Chem. Soc., 120, pp. 11082-11091
  • Shao, H.Y., Jao, S.C., Ma, K., Zagorski, M.G., Solution structures of micelle bound amyloid beta (1-40) and beta (1-42) peptides of Alzheimers's disease (1999) J. Mol. Biol., 285, pp. 755-773
  • Takamoto, D.Y., Lipp, M.M., Von Nahmen, A., Lee, K.Y.C., Waring, A.J., Zasadzinski, J.A., Interaction of lung surfactant proteins with anionic phospholipids (2001) Biophys. J., 81, pp. 153-169
  • Lin, T.Y., Timasheff, S.N., On the role of surface tension in the stabilization of globular proteins (1996) Protein Sci., 5, pp. 372-381
  • Melo, E.P., Faria, T.Q., Martins, L.O., A, C.G.M.C., Cabral, J.M.S., Cutinase unfolding and stabilization by trehalose and mannosylglycerate (2001) Proteins, 42, pp. 542-552
  • Xie, G., Timasheff, S.N., The thermodynamic mechanism of protein stabilization (1997) Biophys. Chem., 64, pp. 25-43
  • Luzardo, M.D.C., Amalfa, F., Nuñez, A.M., Diaz, S., De Lopez, A.C.B., Disalvo, E.A., Effect of trehalose and sucrose on the hydration and dipole potential of lipid bilayers (2000) Biophys. J., 78, pp. 2452-2458
  • Skibinsky, A., Venable, R.M., Pastor, R.W., A molecular dynamics study of the response of lipid bilayers and monolayers on trehalose (2005) Biophys. J., 89, pp. 4111-4121
  • Frishman, D., Argos, P., Knowledge-based secondary structure assignment (1995) Proteins, 23, pp. 566-579

Citas:

---------- APA ----------
Izmitli, A., Schebor, C., McGovern, M.P., Reddy, A.S., Abbott, N.L. & De Pablo, J.J. (2011) . Effect of trehalose on the interaction of Alzheimer's Aβ-peptide and anionic lipid monolayers. Biochimica et Biophysica Acta - Biomembranes, 1808(1), 26-33.
http://dx.doi.org/10.1016/j.bbamem.2010.09.024
---------- CHICAGO ----------
Izmitli, A., Schebor, C., McGovern, M.P., Reddy, A.S., Abbott, N.L., De Pablo, J.J. "Effect of trehalose on the interaction of Alzheimer's Aβ-peptide and anionic lipid monolayers" . Biochimica et Biophysica Acta - Biomembranes 1808, no. 1 (2011) : 26-33.
http://dx.doi.org/10.1016/j.bbamem.2010.09.024
---------- MLA ----------
Izmitli, A., Schebor, C., McGovern, M.P., Reddy, A.S., Abbott, N.L., De Pablo, J.J. "Effect of trehalose on the interaction of Alzheimer's Aβ-peptide and anionic lipid monolayers" . Biochimica et Biophysica Acta - Biomembranes, vol. 1808, no. 1, 2011, pp. 26-33.
http://dx.doi.org/10.1016/j.bbamem.2010.09.024
---------- VANCOUVER ----------
Izmitli, A., Schebor, C., McGovern, M.P., Reddy, A.S., Abbott, N.L., De Pablo, J.J. Effect of trehalose on the interaction of Alzheimer's Aβ-peptide and anionic lipid monolayers. Biochim. Biophys. Acta Biomembr. 2011;1808(1):26-33.
http://dx.doi.org/10.1016/j.bbamem.2010.09.024