Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The scope of the present review focuses on the interfacial properties of cell membranes that may establish a link between the membrane and the cytosolic components. We present evidences that the current view of the membrane as a barrier of permeability that contains an aqueous solution of macromolecules may be replaced by one in which the membrane plays a structural and functional role. Although this idea has been previously suggested, the present is the first systematic work that puts into relevance the relation water-membrane in terms of thermodynamic and structural properties of the interphases that cannot be ignored in the understanding of cell function. To pursue this aim, we introduce a new definition of interphase, in which the water is organized in different levels on the surface with different binding energies. Altogether determines the surface free energy necessary for the structural response to changes in the surrounding media. The physical chemical properties of this region are interpreted in terms of hydration water and confined water, which explain the interaction with proteins and could affect the modulation of enzyme activity. Information provided by several methodologies indicates that the organization of the hydration states is not restricted to the membrane plane albeit to a region extending into the cytoplasm, in which polar head groups play a relevant role. In addition, dynamic properties studied by cyclic voltammetry allow one to deduce the energetics of the conformational changes of the lipid head group in relation to the head-head interactions due to the presence of carbonyls and phosphates at the interphase. These groups are, apparently, surrounded by more than one layer of water molecules: a tightly bound shell, that mostly contributes to the dipole potential, and a second one that may be displaced by proteins and osmotic stress. Hydration water around carbonyl and phosphate groups may change by the presence of polyhydroxylated compounds or by changing the chemical groups esterified to the phosphates, mainly choline, ethanolamine or glycerol. Thus, surface membrane properties, such as the dipole potential and the surface pressure, are modulated by the water at the interphase region by changing the structure of the membrane components. An understanding of the properties of the structural water located at the hydration sites and the functional water confined around the polar head groups modulated by the hydrocarbon chains is helpful to interpret and analyze the consequences of water loss at the membranes of dehydrated cells. In this regard, a correlation between the effects of water activity on cell growth and the lipid composition is discussed in terms of the recovery of the cell volume and their viability. Critical analyses of the properties of water at the interface of lipid membranes merging from these results and others from the literature suggest that the interface links the membrane with the aqueous soluble proteins in a functional unit in which the cell may be considered as a complex structure stabilized by water rather than a water solution of macromolecules surrounded by a semi permeable barrier. © 2008 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Structural and functional properties of hydration and confined water in membrane interfaces
Autor:Disalvo, E.A.; Lairion, F.; Martini, F.; Tymczyszyn, E.; Frías, M.; Almaleck, H.; Gordillo, G.J.
Filiación:Laboratorio de Fisicoquímica de Membranas Lipídicas, Cátedra de Química General e Inorgánica, Departamento de Química Analítica y Fisicoquímica, Junin 956, (1113), Buenos Aires, Argentina
Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, INQUIMAE, Ciudad Universitaria, Pabellon 2, 1428 Buenos Aires, Argentina
Palabras clave:Carbonyl and phosphate groups; Confined water; Dipole potential; H-bonding compounds; Interphase region; Lipid membranes; Protein/membrane interaction; Surface potential; Surface pressure; Water of hydration; carbonyl derivative; choline; ethanolamine; glycerol; hydrocarbon; phosphate; water; chemical structure; dipole; electric field; hydration; interphase; lipid membrane; membrane binding; priority journal; protein interaction; review; surface charge; surface property; Biophysical Phenomena; Cell Membrane; Hydrogen Bonding; Lipid Bilayers; Membrane Lipids; Membranes; Models, Biological; Structure-Activity Relationship; Surface Properties; Water
Año:2008
Volumen:1778
Número:12
Página de inicio:2655
Página de fin:2670
DOI: http://dx.doi.org/10.1016/j.bbamem.2008.08.025
Título revista:Biochimica et Biophysica Acta - Biomembranes
Título revista abreviado:Biochim. Biophys. Acta Biomembr.
ISSN:00052736
CODEN:BBBMB
CAS:choline, 123-41-1, 13232-47-8, 1927-06-6, 4858-96-2, 62-49-7, 67-48-1; ethanolamine, 141-43-5; glycerol, 56-81-5; phosphate, 14066-19-4, 14265-44-2; water, 7732-18-5; Lipid Bilayers; Membrane Lipids; Water, 7732-18-5
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00052736_v1778_n12_p2655_Disalvo.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00052736_v1778_n12_p2655_Disalvo

Referencias:

  • Kinnunen, P.K.J., Lipid bilayers as osmotic response elements (2000) Cell. Physiol. Biochem., 10, pp. 243-250
  • Clegg, J.S., Reversible dehydration and the aqueous compartments of cell (1983) Water Transport in Biological Membranes, , Benga G. (Ed), CRC Press, Boca Raton, FL
  • Crowe, J.H., Clegg, J.S., (1973) Anhydrobiosis, , Dowden, Hutchinson & Ross, Strousberg, PA
  • Brockman, H., Dipole potentials of lipid membranes (1994) Chem. Phys. Lipids, 73, p. 57
  • Tychinskii, V.P., Dynamic phase microscopy: is a "dialogue" with the cell possible? (2007) Phys. Usp., 50, pp. 513-528
  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., (2000) Molecular Biology of the Cell, , Garland Science, New York
  • Lipowsky, R., Sackmann, E., (1995) Structure and Dynamics of Membranes (Handbook of Biological Physics), , Elsevier, Amsterdam
  • Rawicz, W., Smith, B.A., McIntosh, T.J., Simon, S.A., Evans, E.A., Elasticity, strength, and water permeability of bilayers that contain raft microdomain-forming lipids (2008) Biophysical J., , doi:10.1529
  • Chaplin, M.F., A proposal for structuring of water (1999) Biophys. Chem., 83, pp. 211-221
  • Binder, H., Water near lipid membranes as seen by infrared spectroscopy (2007) Eur. Biophys. J., 36 (4-5), pp. 265-279
  • Carrier, D., Wong, P.T.T., Effect of dehydration and hydrostatic pressure on phosphatidylinositol bilayers: infrared spectroscopic study (1996) Chem. Phys. Lipids, 83, pp. 141-152
  • Heimburg, T., A model for the lipid pretransition: coupling of ripple formation with the chain-melting transition (2000) Biophys. J., 78, pp. 1154-1165
  • Le Bihan, T., Pezolet, M., Study of the structure and phase behavior of dipalmitoylphosphatidylcholine by infrared spectroscopy: characterization of the pretransition and subtransition (1998) Chem. Phys. Lipids, 94, pp. 13-33
  • Banerjee, S., Exploring the ripple phase of biomembranes (2002) Physica. A., 308, pp. 89-100
  • Mouritsen, O.G., Theoretical models of phospholipid phase transitions (1991) Chem. Physics. Lipids, 57, pp. 179-194
  • Mouritsen, O.G., Jørgensen, K., Hønger, T., (1995) Permeability and Stability of Lipid Bilayers, pp. 37-160. , Simon D. (Ed)
  • Tanford, C., (1973) The Hydrophobic Effect, pp. 16-21. , Wiley, New York
  • Channareddy, S., Janes, N., Direct determination of hydration in the interdigitated and ripple phases of dihexadecylphosphatidylcholine: hydration of a hydrophobic cavity at the membrane/water interface (1999) Biophys. J., 77 (4), pp. 2046-2050
  • Diaz, S., Amalfa, F., Biondi de Lopez, A.C., Disalvo, E.A., Effect of water polarized at the carbonyl groups of phsophatidylcholines on the dipole potential of lipid bilayers (1999) Langmuir, 15, pp. 5179-5182
  • Senisterra, G.A., Disalvo, E.A., Gagliardino, J.J., Osmotic dependence of lysophosphatidylcholine lytic action on liposomes in the gel state (1988) Biochim. Biophys. Acta, 94, pp. 264-270
  • Disalvo, E.A., de Gier, J., Contribution of aqueous interphases to the permeability barrier of lipid bilayer for non-electrolytes (1983) Chem. Phys. Lipids, 32, pp. 39-47
  • Nagle, J., Tristam-Nagle, S., Structure of lipid bilayers (2000) Biochim. Biophys. Acta, 1469, pp. 159-195
  • Bernik, D.L., Disalvo, E.A., Gel state surface properties of phosphatidylcholine liposomes as measured with merocyanine 540 (1993) Biochim. Biophys. Acta, 1146, pp. 169-177
  • Yegiazaryan, G.A., Poghosyan, A.H., Shahinyan, A.A., The water molecules orientation around the dipalmitoylphosphatidylcholine head group: a molecular dynamics study (2006) Physica A., 362, pp. 197-203
  • R. J. Clarke, The dipole potential of phospholipid membranes and methods for its detection, (2001) Advances Colloid Interface Science, 89-90: 263-281; F. Lairion, E.A. Disalvo, Effect of dipole potential variations on the surface charge potential of lipid membranes, J. Phys. Q1 Chem. A (in press); Simon, S.A., McIntosh, T.J., Depth of water penetration into lipid bilayers (1986) Methods Enzymol., 127, pp. 511-521
  • Davies, J.T., Rideal, E.K., (1961) Interfacial Phenomena, , Academic Press, New York
  • Potts, M., Desiccation tolerance of prokaryotes (1994) Microbiol. Rev., 58, pp. 755-805
  • Tymczyszyn, E.E., Gomez-Zavaglia, A., Disalvo, E.A., Effect of sugars and growth media on the dehydration of Lactobacillus delbrueckii ssp. bulgaricus (2007) J. Appl. Microbiol., 102, pp. 845-851
  • Wood, J.M., Osmosensing by bacteria: signals and membrane-based sensors (1999) Microbiol. Mol. Biol. Rev., 63, pp. 230-262
  • Texeira, P.M., Castro, H., Mohácsi-Farkas, C., Kirby, R.J., Identification of sites of injury in Lactobacillus bulgaricus during heat stress (1997) Appl. Microbiol., 83, pp. 219-226
  • Trevors, J.T., Fluorescent probes for bacterial cytoplasmic membrane research (2003) J. Biochem. Biophys. Methods, 57, pp. 87-103
  • Disalvo, E.A., Permeation of water and polar solutes in lipid bilayers (1988) Advances Colloid Interface. Sci., 29, pp. 141-170
  • McElhaney, R.N., de Gier, J., van der Neut-Kok, E.C.M., The effect of alterations in fatty acid composition and cholesterol content on the nonelectrolyte permeability of Acholeplasma laidlawii B cells and derived liposomes (1973) Biochim. Biophys. Acta, 298, pp. 500-512
  • Rand, R.P., Parsegian, V.A., Hydration forces between phospholipids bilayers (1989) Biochim. Biophys. Acta, 988, pp. 351-376
  • Parsegian, V.A., Fuller, N., Rand, R.P., Measured work of deformation and repulsion of lecithin bilayers (1979) Proc. Natl. Acad. Sci. U. S. A., 76, pp. 2750-2754
  • Le Neveu, D.M., Rand, R.P., Parsegian, V.A., Measurement of forces between lecithin bilayers (1976) Nature, 259, pp. 601-603
  • Leikin, S., Parsegian, V.A., Rau, D.C., Rand, R.P., Hydration forces (1993) Annu Rev Phys Chem., 44, pp. 369-395
  • Simon, S.A., McIntosh, T.J., Magnitude of the solvation pressure depends on dipole potential (1989) Proc. Natl. Acad. Sci. U.S.A., 86, pp. 9263-9267
  • Bhide, S., Berkowitz, M., Structure and dynamics of water at the interface with phospholipid bilayers (2005) J. Chem. Phys., 123. , 224702 1.16
  • Watts, A., Biophysics of the membrane interface (1995) Biochem. Soc. Trans., 23 (4), pp. 959-965
  • Ulrich, A.S., Watts, A., Molecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMR (1994) Biophys. J., 66 (5), pp. 1441-1449
  • Nagle, J.F., Zhang, R., Tristam-Nagle, S., Sun, W.S., Petrache, H.I., Suter, R.M., X-ray structure determination of fully hydrated L alpha phase dipalmitoylphosphatidylcholine bilayers (1996) Biophys. J., 70, pp. 1419-1431
  • White, S.H., Wiener, M.C., Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of X-ray and neutron diffraction data. III. Complete structure (1992) Biophys. J., 61 (2 I), pp. 434-447
  • White, S.H., Wiener, M.C., (1995) Permeability and Stability of Lipid Bilayers, pp. 1-20. , Simon D. (Ed), CRC. Press, Boca Raton, FL
  • Luzardo, M.C., Peltzer, G., Disalvo, E., Surface potential of lipid interfaces formed by mixtures of phosphatidylcholine of different chain lengths (1998) Langmuir, 14 (20), pp. 5858-5861
  • Mac Donald, R.C., Simon, S.A., Lipid monolayer states and their relationships to bilayers (1987) Proc. Natl. Acad. Sci. U. S. A., 84, pp. 4089-4093
  • Janmey1, P.A., Kinnunen, P.K.J., Biophysical properties of lipids and dynamic membranes (2006) Trends Cell Biol., 16 (10), pp. 538-546
  • Lairion, F., Disalvo, E.A., Effect of phloretin on the potential of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol monolayers (2004) Langmuir, 20, pp. 9151-9155
  • Lairion, F., Disalvo, E.A., Effect of arbutin on the dipole potential and area per lipid of ester and ether phosphatidylcholine and phosphatidylethanolamine monolayers (2007) Biochim. Biophys. Acta, Biomembr., 1768, pp. 450-456
  • Lairion, F., Disalvo, E.A., Effect of trehalose on the contributions to the dipole potential of lipid monolayers (2007) Chem. Phys. Lipids, 150 (2), pp. 117-124
  • Sun, W.J., Suter, R.M., Knewtson, M.A., Worthington, C.R., Tristam-Nagle, S., Zang, R., Nagle, J.F., Order and disorder in fully hydrated unoriented bilayers of gel phase DPPC (1994) Phys. Rev. E, 49, pp. 4665-4676
  • Pace, R.J., Chang, S.I., Molecular motions in lipid bilayers. II. Magnetic resonance of multilamellar and vesicle systems (1982) J. Chem. Phys., 76, pp. 4217-4227
  • Buldt, G., Gally, H.U., Seelig, J., Zaccai, G., Neutron diffraction studies on phosphatidylcholine model membranes. I. Head group conformation (1979) J. Mol. Biol., 134, pp. 673-691
  • Schindler, H., Seelig, J., Deuterium order parameters in relation to thermodynamic properties of a phospholipid bilayer. A statistical mechanical interpretation (1975) Biochemistry, 14, pp. 2283-2287
  • Lewis, B.A., Engelman, D.M., Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles (1983) J. Mol. Chem., 166, pp. 211-217
  • Janiak, M.J., Small, D.M., Shipley, G.G., Temperature and compositional dependence of the structure of hydrated dimyristoyl lecithin (1979) J. Biol. Chem., 254, pp. 6068-6078
  • DeYoung, L.R., Dill, K.A., Solute partitioning into lipid bilayer membranes (1988) Biochemistry, 27, pp. 5281-5289
  • Lis, L.J., McAlister, M., Fuller, N., Rand, R.P., Parsegian, V.A., Interactions between neutral phospholipid bilayer membranes (1982) Biophys. J., 37, pp. 657-666
  • Thurmond, R.L., Dodd, S.W., Brown, M.F., Molecular areas of phospholipids as determined by 2H NMR spectroscopy: comparison of phosphatidylethanolamines and phosphatidylcholines (1991) Biophys. J., 59, pp. 108-113
  • Hristova, K., White, S.H., Determination of the hydrocarbon core structure of fluid DOPC bilayers by X-ray diffraction using specific bromination of the double-bonds: effect of hydration (1998) Biophys. J., 74, pp. 2419-2433
  • Selle, C., Pohle, W., Fourier Transform Infrared Spectroscopy as a probe for the study of the hydration of lipid self-assemblies. II. Water binding versus phase transitions (1998) Biospectroscopy, 4, pp. 281-294
  • Mashl, R.J., Scott, H.L., Subramaniam, S., Jakobsson, E.r.i.c., Molecular simulation of dioleoylphosphatidylcholine lipid bilayers at differing levels of hydration (2001) Biophys. J., 81, pp. 3005-3015
  • Lairion, F., Filler, R., Disalvo, E.A., Reversed micelles as model systems to study the interfacial properties of lipid bilayers (2002) Colloids Surf. B Biointerfaces, 25 (4), pp. 369-371
  • Arrondo, J.L., Goñi, F.M., Macarulla, J.M., Infrared spectroscopy of phosphatidylcholines in aqueous suspension a study of the phosphate group vibrations (1984) Biochim. Biophys. Acta, 794 (1), pp. 165-168
  • Goñi, F.M., Arrondo, J.L., A study of phospholipid phosphate groups in model membranes by Fourier-transform infrared-spectroscopy (1986) Faraday Discuss. Chem. Soc., 81, pp. 117-126
  • Disalvo, E.A., Lairion, F., Díaz, S., Arroyo, J., "Recent research developments in biophysical chemistry" Physical chemistry of lipid interfaces: State of hydration, topological and electrical properties (2002) Research Signpost, pp. 181-197. , Condat C.A., and Baruzzi A. (Eds)
  • Lehtonen, J.Y., Kinnunen, P.K., Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes (1995) Biophys. J., 68, pp. 525-535
  • Crowe, J.H., Hoekstra, F.A., Crowe, L.M., Anhydrobiosis (1992) Annu. Rev. Physiol., 54, pp. 579-599
  • Luzardo, M.C., Amalfa, F., Núñez, A., Díaz, S., Biondi de López, A.C., Disalvo, E.A., Effect of trehalose and sucrose on the hydration and dipole potential of lipid bilayers (2000) Biophys. J., 78, pp. 2452-2458
  • Crowe, J.H., Crowe, L.M., Carpenter, J.F., Wistrom, C.A., Stabilization of dry phospholipid bilayers and proteins by sugars (1987) Biochem. J., 242, pp. 1-10
  • Jendrasiak, G.L., The hydration of phospholipids and its biological significance (1996) J. Nutr. Biochem., 7 (11), pp. 599-609
  • Marcus, Y., (1997) Ion Properties, , Marcel Dekker, Inc., New York
  • Pohle, W., Selle, C., Fritzsche, H., Bohl, M., Comparative FTIR spectroscopic study upon the hydration of lecithins and cephalins (1997) J. Mol. Struct., 408-409, pp. 273-277
  • Alper, H.E., Bassolino-Klimas, D., Stouch, T.R., The limiting behaviour of water hydrating a phospholipid monolayer: a computer simulation study (1993) J. Chem. Phys., 99 (7), pp. 5547-5559
  • Jendrasiak, G.L., Smith, R.L., The effect of the choline head group on phospholipid hydration (2004) Chem. Phys. Lipids, 131 (2), pp. 183-195
  • Taylor, R.P., Huang, C.H., Broccoli, A.V., Leake, L., Nuclear magnetic resonance studies of amphiphile hydration. Effects of cholesterol on phosphatidyl choline hydration (1977) Archives Biochem. Biophys., 183 (1), pp. 83-89
  • Ter-Minassian-Saraga, L., Madelmont, G., Cholesterol-induced modulation of membrane hydration studies by thermal analysis (1982) FEBS Lett., 137 (1), pp. 137-140
  • Cevc, G., Polymorphism of the bilayer membranes in the ordered phase and the molecular origin of the lipid pretransition and rippled lamellae (1991) Biochim. Biophys. Acta., 1062, pp. 59-69
  • Shin, Y.K., Budil, D.E., Freed, J.H., Thermodynamics and dynamics of phosphatidylcholine-cholesterol mixed model membranes in the liquid crystalline state: effects of water (1993) Biophys. J., 65 (3), pp. 1283-1294
  • Slater, S.J., Ho, C., Taddeo, F.J., Kelly, M.B., Stubbs, C.D., Contribution of hydrogen bonding to lipid-lipid interactions in membranes and the role of lipid order: effects of cholesterol, increased phospholipid unsaturation, and ethanol (1993) Biochemistry, 32 (14), pp. 3714-3721
  • Ariga, K., Okahata, Y., Hydration behavior of phospholipid Langmuir-Blodgett (LB) films deposited on a quartz-crystal microbalance depending on temperatures in water (1994) Langmuir, 10 (7), pp. 2272-2276
  • Ho, C., Slater, S.J., Stubbs, C., Hydration and order in lipid bilayers (1995) Biochemistry, 3, pp. 6188-6195
  • McIntosh, T.J., Hydration properties of lamellar and non-lamellar phases of phosphatidylcholine and phosphatidylethanolamine (1996) Chem. Phys. Lipids, 81 (2), pp. 117-131
  • Hsieh, C.H., Sue, S.C., Lyu, P.C., Wu, W.G., Membrane packing geometry of diphytanoylphosphatidylcholine is highly sensitive to hydration: phospholipid polymorphism induced by molecular rearrangement in the headgroup region (1997) Biophys. J., 73 (2), pp. 870-877
  • Bach, D., Miller, I.R., Hydration of phospholipid bilayers in the presence and absence of cholesterol (1998) Biochim. Biophys. Acta - Biomembranes, 1368 (2), pp. 216-224
  • Channareddy, S., Janes, N., Direct determination of hydration in the interdigitated and ripple phases of dihexadecylphosphatidylcholine: hydration of a hydrophobic cavity at the membrane/water interface (1999) Biophys. J., 77 (4), pp. 2046-2050
  • Hübner, W., Blume, A., Interactions at the lipid-water interface (1998) Chem. Phys. Lipids, 96 (1-2), pp. 99-123
  • Lewis, R.N.A.H., McElhaney, R.N., Monck, M.A., Cullis, P.R., Studies of highly asymmetric mixed-chain diacyl phosphatidylcholines that forms mixed-interdigitated gel phases: Fourier transform infrared and 2H-NMR spectroscopic studies of hydrocarbon chain conformation and orientational order in the liquid-crystalline state (1994) Biophys. J., 67, pp. 197-207
  • Lewis, R.N.A.H., Pohle, W., McElhaney, R.N., The interfasial structure of phospholipid bilayers: differential scanning calorimetry and fourier transform infrared spectroscopic studies of 1,2-dipalmitoyl-sn-glycero-3-phosphoryl-choline and its dialkyl and acyl-alkyl analogs (1996) Biophys. J., 70, pp. 2736-2746
  • Lewis, R.N.A.H., McElhaney, R.N., Pohle, W., Mantsch, H.H., The components of the carbonyl stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayers: a re-evaluation (1994) Biophys. J., 67, pp. 2367-2375
  • Pohle, W., Selle, C., Rettig, W., Heiser, U., Dobner, B., Wartewig, S., Phase transitions and hydrogen bonding in a bipolar phosphocholine evidenced by calorimetry and vibrational spectroscopy (2001) Arch. Biochem. Biophys., 396 (2), pp. 151-161
  • Pohle, W., Gauger, D.R., Fritzsche, H., Rattay, B., Selle, C., Binder, H., Bohlig, H., FTIR-spectroscopic characterization of phosphocholine-headgroup model compounds (2001) J. Mol. Struct., 563, pp. 463-467
  • Pohle, W., Selle, C., Fritzsche, H., Binder, H., Fourier transform infrared spectroscopy as a probe for the study of the hydration of lipid self-assemblies. I. Methodology and general phenomena (1998) Biospectroscopy, 4 (4), pp. 267-280
  • Jendrasiak, G.L., Smith, R.L., The effect of the choline head group on phospholipid hydration (2001) Chem. Phys. Lipids, 113, pp. 1-25 55-66
  • Pohle, W., Gauger, D.R., Fritzsche, H., Rattay, B., Selle, C., Binder, H., Böhlig, H., FTIR-spectroscopic characterization of phosphocholine-headgroup model compounds (2001) J. Mol. Struc., 563-564, pp. 463-467
  • Binder, H., Kohlstrunk, B., Heerklotz, H.H., A humidity titration calorimetry technique to study the thermodynamics of hydration (1999) Chem. Phys. Lett., 304, pp. 329-335
  • Binder, H., Peinel, G., Behaviour of water at membrane surfaces-a molecular dynamics study (1985) J. Mol. Struct., 123, pp. 155-163
  • Binder, H., The molecular architecture of lipid membranes - new insights from hydration-tuning infrared linear dichroism spectroscopy (2003) Appl. Spectrosc. Rev., 38 (1), pp. 15-69
  • Binder, H., Kohlstrunk, B., Heerklotz, H.H., Hydration and lyotropic melting of amphiphilic molecules-a thermodynamic study using humidity titration calorimetry (1999) J. Colloid Interface Sci., 220, pp. 235-249
  • Lewis, R.N.A.H., McElhaney, R.N., (1996) "Infrared Spectroscopy of Biomolecules", pp. 159-202. , Mantsch H.H., and Chapman D. (Eds), Wiley-Liss, NY
  • Heerklotz, H., Epand, R.M., The enthalpy of acyl chain packing and the apparent water-accessible apolar surface area of phospholipids (2001) Biophys J., 80 (1), p. 78
  • Pink, D.A., McNeil, S., Quinn, B., Zuckermann, M.J., A model of hydrogen bond formation in phosphatidylethanolamine bilayers (1998) Biochim. Biophys. Acta., 1368, pp. 289-305
  • Gally, H.U., Niederberger, W., Seelig, J., Conformation and motion of the choline head group in bilayers of dipalmitoyl-3-sn-phosphatidylcholine (1975) Biochemistry, 14 (16), pp. 3647-3652
  • Díaz, S.B., Amalfa, F., Biondi de López, A.C., Disalvo, E.A., Effect of water polarized at the carbonyl groups of phosphatidylcholines on the dipole potential of lipid bilayers (1999) Langmuir, 15 (15), pp. 5179-5182
  • Díaz, S.B., Lairion, F., Arroyo, J., Biondi de Lopez, A.C., Disalvo, E.A., Contribution of phosphate groups to the dipole potential of dimyristoylphosphatidylcholine membranes (2001) Langmuir, 17 (3), pp. 852-855
  • Frías, M.A., Díaz, S.B., Ale, N.M., Ben Altabef, A., Disalvo, E., FTIR analysis of the interaction of arbutin with dimyristoyl phosphatidylcholine in anhydrous and hydrated states (2006) Biochim. Biophys. Acta, 1758, pp. 1823-1829
  • Frías, M.A., Nicastro, A., Casado, N., Gennaro, A., Díaz, S.B., Disalvo, E.A., Arbutin blocks defects in the ripple phase of DMPC bilayers by changing carbonyl organization (2007) Chem. Phys. Lipids, 147, pp. 22-29
  • Mingtao, G., Jack Freed, H., Hydration, structure, and molecular interactions in the headgroup region of dioleoylphosphatidylcholine bilayers: an electron spin resonance study (2003) Biophys. J., 85 (6), pp. 4023-4040
  • Yguerabide, J., Foster, M.C., Fluorescence spectroscopy of biological membranes (1981) Membrane Spectroscopy, pp. 199-269. , Grell E. (Ed), Springer, New York
  • Disalvo, E.A., Viera, L.I., Bakas, L.S., Senisterra, G.A., Lysophospholipids as natural molecular harpoons sensing defects at lipid membranes (1996) J. Coll. Interf. Sci., 178, pp. 417-425
  • Oliver, A.E., Crowe, L.M., de Araujo, P.S., Fisk, E., Crowe, J.H., Arbutin inhibits PLA2 in partialyy hydrated model systems (1996) Biochim. Biophys. Acta, 1302 (1), pp. 69-78
  • Haines, T.H., Leivovitch, L.S., (1995) Permeability and Stability of Lipids Bilayers, pp. 123-136. , Simons D. (Ed), C.R.C. Press, Florida
  • Bechinger, B., Seelig, J., Interaction of electric dipoles with phospholipid head groups. A 2H and 31P NMR study of phloretin analogues in phosphatidylcholine membranes (1991) Biochemistry, 30, pp. 3923-3929
  • Seelig, A., Allegrini, P.R., Seelig, J., Partitioning of local anesthetics into membranes: surface charge effects monitored by the phospholipid head-group (1988) Biochim. Biophys. Acta, 939 (2), p. 267
  • Miller, I.R., Bach, D., Structure and membrane properties of lecithin monolayers at the polarized mercury/water interface (1969) J. Colloid Interface Sci., 29, p. 250
  • Bach, D., Miller, I.R., The inhibition of oxygen reduction by adsorbed monolayers of phospholipids, proteins and synthetic polybases (1970) Electrochim. Acta, 15, p. 533
  • Moncelli, M.R., Becucci, L., Nelson, A., Guidelli, R., Electrochemical modeling of electron and proton transfer to ubiquinone-10 in a self-assembled phospholipid monolayer (1996) Biophys. J., 70, pp. 2716-2726
  • Bach, D., Miller, I.R., Robert, F., Transport of ions across lipoprotein monolayers adsorbed at the polarized mercury/water interface (1970) Chem. Phys. Lipids, 4, p. 269
  • Lyklema, J., (2000) Physical Chemistry of Biological Interfaces, pp. 1-47. , Baszkin A., and Norde W. (Eds), Marce Dekker, New York
  • Gawrisch, K., Ruston, D., Zimmerberg, J., Parsegian, V.A., Rand, R.P., Fuller, N., Membrane dipole potentials, hydration forces and the ordering of water at the membrane surfaces (1992) Biophys. J., 61, pp. 1213-1223
  • Lehtonen, J.Y.A., Kinnunen, P.K.J., Changes in the lipid dynamics of liposomal membranes induced by poly(ethylene glycol): free volume alterations revealed by inter- and intra molecular excimer-forming phospholipids analogs (1994) Biophys. J., 66, pp. 1981-1990
  • Söderlund, T., Alakostela, J.M.I., Pakkanen, A.L., Kinnunen, P.K.J., Comparison of the effects of surface tension and osmotic pressure on the interfacial hydration of a fluid phospholipid bilayer (2003) Biophys. J., 85, pp. 2333-2341
  • Lazrak, T., Milon, A., Wolff, G., Albrecht, A.M., Miele, M., Ourisson, G., Nakatani, Y., Comparison of the effects of inserted C40- and C so-terminally dihydroxylated carotenoids on the mechanical properties of various phospholipid vesicles (1987) Biochim. Biophys. Acta., 903, pp. 132-141. , See also Erratum, Biochim. Biophys. Acta. 22 (1988) 427
  • Pope, J.M., Cornell, B.A., A pulsed NMR study of lipids, bound water and sodium ions in macroscopically oriented lecithin/water lyotropic liquid crystal model membrane systems (1979) Chem. Phys. Lipids., 24, pp. 27-43
  • Hunter, G.W., Squier, T.C., Phospholipid acyl chain rotational dynamics are independent of headgroup structure in unilamellar vesicles containing binary mixtures of dioleoyl-phosphatidylcholine and dioleoyl-phosphatidylethanolamine (1998) Biochim. Biophys. Acta, 1415 (1), pp. 63-76
  • Cheng, K.H., Ruonala, M., Virtanen, J., Somerharju, P., Evidence for superlattice arrangements in fluid phosphatidylcholine/phosphatidylethanolamine bilayers (1997) Biophys. J., 73 (4), pp. 1967-1976
  • Nelson, A., Auffret, N., Phospholipid monolayers of di-oleoyl lecithin at the mercury/water interface (1988) J. Electroanal. Chem., 244, p. 99
  • Kodama, M., Miyata, T., Effect of the head group of phospholipids on the acyl-chain packing and structure of their assemblies as revealed by microcalorimetry and electron microscopy (1996) Colloids Surf. A, 109, p. 283
  • Almaleck, S.H., Lairion, F., Disalvo, E.A., Gordillo, G.J., Lipid monolayers on Hg as a valid experimental model for lipid membranes under electrical fields (2006) Chem. Phys. Lipids, 139, pp. 150-156
  • Aoki, H., Kodama, M., The behavior of water molecules in semi-crystalline bilayer structure of phosphatidylethanolamine (1997) J. Ther. Anal. Calorim., 49 (2), p. 839
  • Leekumjorn, S., Sum, A., Molecular simulation study of structural and dynamic properties of mixed DPPC/DPPE (2006) Bilayers. Biophys. J., 90, p. 3951
  • Defay, R., Prigogine, I., (1966) Surface Tension and Adsorption, , John Wiley &Sons, New York
  • Damodaran, S., Water activity at interfaces and its role in regulation of interfacial enzymes: a hypothesis (1998) Colloids Surf. B Biointerfaces, 11 (5), pp. 231-237
  • Schwarz, G., Taylor, S.E., Polymorphism and interactions of a viral fusion peptide in a compressed lipid monolayer (1999) Biophys. J., 76, pp. 3167-3175
  • McIntosh, T.J., Vidal, A., Simon, S.A., The energetics of peptide-lipid interactions: Modulation by interfacial dipoles and cholesterol (2002) Peptide-Lipid interactions, pp. 309-338. , McIntosh S. (Ed), Academic Press Chapter 11
  • Martini, M.F., Disalvo, E.A., Superficially active water in lipid membranes and its influence on the interaction of an aqueous soluble protease (2007) Biochim. Biophys. Acta, 1768 (10), pp. 2541-2548
  • Martini, M.F., Disalvo, E.A., Effect of polar head groups on the activity of aspartyl protease adsorbed to lipid membranes (2003) Chem. Phys. Lipids, 122 (1-2), pp. 177-183
  • Rao, C.S., Damodaran, S., Surface pressure dependence of phospholipase A2 activity in lipid monolayers is linked to interfacial water activity (2004) Colloids Surf. B Biointerfaces, 34, pp. 197-204
  • Pasenkiewicz- Gierula, M., Takaoka, Y., Miyagawa, H., Kitamura, K., Kusumi, A., Hydrogen bonding of water to phosphatidylcholine in the membrane as studied by a molecular dynamics simulation: location, geometry, and lipid-lipid bridging via hydrogen-bonded water (1997) J. Phys. Chem. A., 101, pp. 3677-3691
  • Pasenkiewicz-Gierula, M., Takaoka, Y., Miyagawa, H., Kitamura, K., Kusumi, A., Charge pairing of headgroups in phosphatidylcholine membranes: a molecular dynamics simulation study (1999) Biophys. J., 76, pp. 1228-1240
  • Hauser, H., Pascher, I., Sundell, S., Preferred conformation and dynamics of the glycerol backbone in phospholipids. An NMR and X-ray single-crystal analysis (1988) Biochemistry, 27, pp. 9166-9174
  • Zhou, L., Siegelbaum, S.A., Effects of surface water on protein dynamics studied by a novel coarse-grained normal (2008) Biophys. J., 94, pp. 3461-3474
  • Welch, G.R., Berry, M.N., Long-range energy continua in the living cell: protochemical considerations (1983) Coherent Excitations in Biological Systems, pp. 115-140. , Fröhlich H., and Kremer F. (Eds), Springer, Heidelberg
  • Binder, H., Kohlstrunk, B., Pohle, W., Thermodynamic and kinetic aspects of lyotropic solvation-induced transitions in phosphatidylcholine and phosphatidylethanolamine assemblies revealed by humidity titration calorimetry (2000) J. Phys. Chem. B, 104, pp. 12049-12055
  • Wennestrom, H., Spaar, E., Thermodynamics of membrane hydration (2003) Pure Appl. Che., 75 (7), pp. 905-912
  • Seu, K.J., Cambrea, L.R., Everly, M.R., Hovis, J.S., Influence of lipid chemistry on membrane fluidity: tail and headgroup interactions (2006) Biophys. J., 91, pp. 3727-3735
  • Collins, K.D., Washabaugh, M.W., The Hofmeister effect and the behaviour of water at interfaces (1985) Quart. Rev. Biophys., 18, pp. 323-422

Citas:

---------- APA ----------
Disalvo, E.A., Lairion, F., Martini, F., Tymczyszyn, E., Frías, M., Almaleck, H. & Gordillo, G.J. (2008) . Structural and functional properties of hydration and confined water in membrane interfaces. Biochimica et Biophysica Acta - Biomembranes, 1778(12), 2655-2670.
http://dx.doi.org/10.1016/j.bbamem.2008.08.025
---------- CHICAGO ----------
Disalvo, E.A., Lairion, F., Martini, F., Tymczyszyn, E., Frías, M., Almaleck, H., et al. "Structural and functional properties of hydration and confined water in membrane interfaces" . Biochimica et Biophysica Acta - Biomembranes 1778, no. 12 (2008) : 2655-2670.
http://dx.doi.org/10.1016/j.bbamem.2008.08.025
---------- MLA ----------
Disalvo, E.A., Lairion, F., Martini, F., Tymczyszyn, E., Frías, M., Almaleck, H., et al. "Structural and functional properties of hydration and confined water in membrane interfaces" . Biochimica et Biophysica Acta - Biomembranes, vol. 1778, no. 12, 2008, pp. 2655-2670.
http://dx.doi.org/10.1016/j.bbamem.2008.08.025
---------- VANCOUVER ----------
Disalvo, E.A., Lairion, F., Martini, F., Tymczyszyn, E., Frías, M., Almaleck, H., et al. Structural and functional properties of hydration and confined water in membrane interfaces. Biochim. Biophys. Acta Biomembr. 2008;1778(12):2655-2670.
http://dx.doi.org/10.1016/j.bbamem.2008.08.025