Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Predictable seasonal changes in resources are thought to drive the timing of annual animal migrations; however, we currently understand little about which environmental cues or resources are tracked by different migratory bird species across the planet. Understanding which environmental cues or resources birds track in multiple migratory systems is a prerequisite to developing generalizable conservation plans for migratory birds in a changing global environment. Within the New World, climatic differences experienced by Nearctic-Neotropical migratory (NNM; i.e. breed in North America and spend the nonbreeding period in the Neotropics) and Neotropical austral migratory (NAM; i.e. breed and spend the nonbreeding period wholly within South America) bird species suggest that their migratory strategies may be shaped by unique selective pressures. We used data gathered from individuals fitted with light-level geolocators to build species distribution models (SDMs) to test which environmental factors drive the migratory strategies of species in each system. To do so, we evaluated whether temperature, precipitation, and primary productivity (NDVI) were related to the seasonal distributions of an NNM (Eastern Kingbird [Tyrannus tyrannus]) and NAM species (Fork-tailed Flycatcher [T. savana]). Both Eastern Kingbird and Fork-tailed Flycatcher locations were positively correlated with high precipitation during their nonbreeding seasons. Eastern Kingbird locations were positively correlated with both NDVI and temperature during their breeding season and both pre- and post-breeding migrations. Fork-tailed Flycatcher locations were positively correlated with both temperature and precipitation during both migrations, but only temperature during the breeding season. The value of extending the application of geolocator data, such as in SDMs, is underscored by the finding that precipitation was such an important predictor of the nonbreeding distributions of both types of migrants, as it remains unclear how global climate change will affect wet-dry cycles in the tropics. © 2018 American Ornithological Society.

Registro:

Documento: Artículo
Título:Follow the rain? Environmental drivers of Tyrannus migration across the New World
Autor:MacPherson, M.P.; Jahn, A.E.; Murphy, M.T.; Kim, D.H.; Cueto, V.R.; Tuero, D.T.; Hill, E.D.
Filiación:Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, United States
Departamento de Zoologia, Universidade Estadual Paulista, Rio-Claro, São Paulo, Brazil
Department of Biology, Portland State University, Portland, OR, United States
Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de la Patagonia San Juan Bosco, Chubut, Argentina
Departmento de Ecología, Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
School of Natural Resources, University of Missouri, Columbia, MO, United States
Palabras clave:Climate; Geolocator; Maxent; Migration; Seasonality; Species distribution model; bird; climate change; environmental cue; environmental factor; maximum entropy analysis; migration; migratory species; seasonal variation; seasonality; North America; South America; Animalia; Aves; Tyrannus; Tyrannus savana; Tyrannus tyrannus
Año:2018
Volumen:135
Número:4
Página de inicio:881
Página de fin:894
DOI: http://dx.doi.org/10.1642/AUK-17-209.1
Título revista:Auk
Título revista abreviado:Auk
ISSN:00048038
CODEN:AUKJA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00048038_v135_n4_p881_MacPherson

Referencias:

  • Abdi, A.M., Vrieling, A., Yengoh, G.T., Anyamba, A., Seaquist, J.W., Ummenhofer, C.C., Ardö, J., The El niño - La niña cycle and recent trends in supply and demand of net primary productivity in african drylands (2016) Climatic Change, 138, pp. 111-125
  • Allen, M.R., Ingram, W.J., Constraints on future changes in climate and the hydrologic cycle (2002) Nature, 419, pp. 224-232
  • Anderson, R.P., Raza, A., The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: Preliminary tests with montane rodents (genus nephelomys) in Venezuela (2010) Journal of Biogeography, 37, pp. 1378-1393
  • Bairlein, F., Coppack, T., Migration in the life-history of birds (2006) Journal of Ornithology, 147, p. 121
  • Bivand, R., Keitt, T., Rowlingson, B., (2016) Rgdal: Bindings for the 'Geospatial' Data Abstraction Library, , https://CRAN.R-project.org/package=rgdal, R packager version 1.1-10
  • Both, C., Bouwhuis, S., Lessells, C.M., Visser, M.E., Climate change and population declines in a long-distance migratory bird (2006) Nature, 441, pp. 81-83
  • Boyle, W.A., Partial migration in birds: Tests of three hypotheses in a tropical lekking frugivore (2008) Journal of Animal Ecology, 77, pp. 1122-1128
  • Bridge, E.S., Ross, J.D., Contina, A.J., Kelly, J.F., Do molt-migrant songbirds optimize migration routes based on primary productivity? (2016) Behavioral Ecology, 27, pp. 784-792
  • Bridge, E.S., Thorup, K., Bowlin, M.S., Chilson, P.B., Diehl, R.H., Fléron, R.W., Hartl, P., Wikelski, M., Technology on the move: Recent and forthcoming innovations for tracking migratory birds (2011) BioScience, 61, pp. 689-698
  • Chesser, R.T., Migration in South America: An overview of the austral system (1994) Bird Conservation International, 4, pp. 91-107
  • Cicero, C., Barriers to sympatry between avian sibling species (Paridae: Baeolophus) in local secondary contact (2004) Evolution, 58, pp. 1573-1587
  • Cormier, R.L., Humple, D.L., Gardali, T., Seavy, N.E., Light-level geolocators reveal strong migratory connectivity and within-winter movements for a coastal California Swainson's thrush (Catharus ustulatus) population (2013) The Auk, 130, pp. 283-290
  • Coutinho-Silva, R.D., Montes, M.A., Oliveira, G.F., De Carvalho-Neto, F.G., Rohde, C., Garcia, A.C.L., Effects of seasonality on drosophilids (Insecta, diptera) in the northern part of the atlantic forest, Brazil (2017) Bulletin of Entomological Research, 107, pp. 634-644
  • Cueto, V.R., Jahn, A.E., Sobre la necesidad de tener un nombre estandarizado para las aves que migrant dentro de América del sur (2008) Hornero, 23, pp. 1-4
  • Dingle, H., Bird migration in the southern hemisphere: A review comparing continents (2008) Emu, 108, pp. 341-359
  • Dingle, H., Drake, V., What is migration? (2007) Bioscience, 57, pp. 113-121
  • Drent, R.H., Eichhorn, G., Flagstad, A., Van Der-Graaf, A.J., Litvin, K.E., Stahl, J., Migratory connectivity in arctic geese: Spring stopovers are the weak links in meeting targets for breeding (2007) Journal of Ornithology, 148, pp. 501-514
  • Dunn, P.O., Winkler, D.W., Climate change has affected the breeding date of tree swallows throughout North America (1999) Proceedingsof the Royal Society of London, Series B, 266, pp. 2487-2490
  • Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R.J., Li, J., Novel methods improve prediction of species' distributions from occurrence data (2006) Ecography, 29, pp. 129-151
  • Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J., A statistical explanation of MaxEnt for ecologists (2011) Diversity and Distributions, 17, pp. 43-57
  • Eyres, A., Böhning-Gaese, K., Fritz, S.A., Quantification of climatic niches in birds: Adding the temporal dimension (2017) Journal of Avian Biology, 48, pp. 1517-1531
  • Faaborg, J., Holmes, R.T., Anders, A.D., Bildstein, K.L., Dugger, K.M., Gauthreaux, S.A., Jr., Heglund, P., Latta, S.C., Recent advances in understanding migration systems of new world land birds (2010) Ecological Monographs, 80, pp. 3-48
  • Fielding, A.H., Haworth, P.F., Testing the generality of bird-habitat models (1995) Conservation Biology, 9, pp. 1466-1481
  • Fitzpatrick, J., Bates, J., Bostwick, K., Caballero, I., Clock, B., Farnsworth, A., Hosner, P., Mobley, J., Family tyrannidae (Tyrant-flycatchers) (2004) Handbook of the Birds of the World, Volume 9: Contingas to Pipits and Wagtails, pp. 419-425. , (del Hoyo, J. A. Elliott, and D. A. Christie, Editors). Lynx Edicions, Barcelona, Spain
  • Forzieri, G., Feyen, L., Cescatti, A., Vivoni, E.R., Spatial and temporal variations in ecosystem response to monsoon precipitation variability in southwestern North America (2014) Journal of Geophysical Research: Biogeosciences, 119, pp. 1999-2017
  • Goetz, S.J., Prince, S.D., Small, J., Gleason, A.C.R., Interannual variability of global terrestrial primary production: Results of a model driven with satellite observations (2000) Journal of Geophysical Research: Atmospheres, 105, pp. 20077-20091
  • Graham, C.H., Ron, S.R., Santos, J.C., Schneider, C.J., Moritz, C., Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs (2004) Evolution, 58, pp. 1781-1793
  • Guaraldo, A.C., Kelly, J.F., Marini, M.A., Contrasting annual cycles of an intratropical migrant and a tropical resident bird (2016) Journal of Ornithology, 157, pp. 695-705
  • Hahn, S., Korner-Nievergelt, F., Emmenegger, T., Amrhein, V., Csörg, T., Longer wings for faster springs - wing length relates to spring phenology in a longdistance migrant across its range (2016) Ecology and Evolution, 6, pp. 68-77. , o, A. Gursoy, M. Ilieva, P. Kverek, J. Pérez-Tris, S. Pirrello, P. Zehtindjiev, and V. Salewski
  • Hayes, F.E., Scharf, P.A., Ridgely, R.S., Austral bird migrants in Paraguay (1994) The Condor, 96, pp. 83-97
  • Hedenström, A., Adaptations to migration in birds: Behavioural strategies, morphology and scaling effects (2008) Philosophical Transactions of the Royal Society of London, Series B, 363, pp. 287-299
  • Hijmans, R.J., (2016) Raster: Geographic Data Analysis and Modeling, , https://CRAN.R-project.org/package=raster, R package version 2.5-8
  • Hoerling, M., Eischeid, J., Kumar, A., Leung, R., Mariotti, A., Mo, K., Schubert, S., Seager, R., Causes and predictability of the 2012 great plains drought (2014) Bulletin of the American Meteorological Society, 95, pp. 269-282
  • Hüppop, O., Hüppop, K., North atlantic oscillation and timing of spring migration in birds (2003) Proceedings of the Royal Society of London, Series B, 270, pp. 233-240
  • Ineson, S., Scaife, A.A., The role of the stratosphere in the european climate response to El niño (2009) Nature Geoscience, 2, pp. 32-36
  • Jahn, A.E., Tuero, D.T., (2013) Fork-tailed Flycatcher (Tyrannus Savana), , https://doi.org/10.2173/nb.fotfly.01, version 1.0. In Neotropical Birds Online (T. S. Schulenberg, Editor). Cornell Lab of Ornithology, Ithaca, NY, USA
  • Jahn, A.E., Cueto, V.R., Fox, J.W., Husak, M.S., Kim, D.H., Landoll, D.V., Ledezma, J.P., Renfrew, R.B., Migration timing and wintering areas of three species of flycatchers (Tyrannus) breeding in the great plains of North America (2013) The Auk, 130, pp. 247-257
  • Jahn, A.E., Levey, D.J., Cueto, V.R., Ledezma, J.P., Tuero, D.T., Fox, J.W., Masson, D., Long-distance bird migration within South America revealed by light-level geolocators (2013) The Auk, 130, pp. 223-229
  • Jahn, A.E., Levey, D.J., Hostetler, J.A., Mamani, A.M., Determinants of partial bird migration in the amazon basin (2010) Journal of Animal Ecology, 79, pp. 983-992
  • Jahn, A.E., Levey, D.J., Mamani, A.M., Saldias, M., Alcoba, A., Ledezma, M.J., Flores, B., Hilarion, F., Seasonal differences in rainfall, food availability, and the foraging behavior of tropical kingbirds in the southern amazon basin (2010) Journal of Field Ornithology, 81, pp. 340-348
  • Jahn, A.E., Levey, D.J., Smith, K.G., Reflections across hemispheres: A system-wide approach to new world bird migration (2004) The Auk, 121, pp. 1005-1013
  • Jahn, A.E., Tuero, D.T., Mamani, A.M., Bejarano, V., Masson, D.A., Aguilar, E., Drivers of clutch-size in fork-tailed flycatchers (Tyrannus savana) at temperate and tropical latitudes in South America (2014) Emu, 114, pp. 337-342
  • Jenni, L., Kéry, M., Timing of autumn bird migration under climate change: Advances in long-distance migrants, delays in short-distance migrants (2003) Proceedings of the Royal Society of London, Series B, 270, pp. 1467-1471
  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Zhu, Y., The NCEP/NCAR 40-year reanalysis project (1996) Bulletin of the American Meteorological Society, 77, pp. 437-472
  • Kenyon, J., Hegerl, G.C., Influence of modes of climate variability on global precipitation extremes (2010) Journal of Climate, 23, pp. 6248-6262
  • Kharouba, H.M., Algar, A.C., Kerr, J.T., Historically calibrated predictions of butterfly species' range shift using global change as a pseudo-experiment (2009) Ecology, 90, pp. 2213-2222
  • Lambert, F.H., Allen, M.R., Are changes in global precipitation constrained by the tropospheric energy budget? (2009) Journal of Climate, 22, pp. 499-517
  • La Sorte, F.A., Fink, D., Hochachka, W.M., DeLong, J.P., Kelling, S., Spring phenology of ecological productivity contributes to the use of looped migration strategies by birds (2014) Proceedings of the Royal Society B, 281, p. 20140984
  • Lisovski, S., Hahn, S., GeoLight - processing and analysing light-based geolocator data in R (2012) Methods in Ecology and Evolution, 3, pp. 1055-1059
  • Marini, M.A., Lobo, Y., Lopes, L.E., Fiança, L.F., De Paiva, L.V., Biologia reprodutiva de tyrannus savana (Aves, tyrannidae) em cerrado do brasil central (2009) Biota Neotropica, 9, pp. 55-63
  • Marra, P.P., Francis, C.M., Mulvihill, R.S., Moore, F.R., The influence of climate on the timing and rate of spring bird migration (2005) Oecologia, 142, pp. 307-315
  • Mazerolle, D.F., Hobson, K.A., Patterns of differential migration in white-throated sparrows evaluated with isotopic measurements of feathers (2007) Canadian Journal of Zoology, 85, pp. 413-420
  • Mendoza, I., Peres, C.A., Morellato, L.P.C., Patrícia, L., Morellato, C., Continental-scale patterns and climatic drivers of fruiting phenology: A quantitative neotropical review (2017) Global and Planetary Change, 148, pp. 227-241
  • Milner-Gulland, E.J., Fryxell, J.M., Sinclair, A.R.E., (2011) Animal Migration: A Synthesis, , Oxford University Press, New York, NY, USA
  • Morán-Tejeda, E., Bazo, J., López-Moreno, J.I., Aguilar, E., Azorín-Molina, C., Sanchez-Lorenzo, A., Martínez, R., Vicente-Serrano, S.M., Climate trends and variability in Ecuador (1966-2011) (2016) International Journal of Climatology, 36, pp. 3839-3855
  • Morton, E.S., Food and migration habits of the eastern kingbird in Panama (1971) The Auk, 88, pp. 925-926
  • Mosquin, T., Competition for pollinators as a stimulus for the evolution of flowering time (1971) Oikos, 22, pp. 398-402
  • Murphy, M.T., Pyle, P., (2018) Eastern Kingbird (Tyrannus Tyrannus), Version 2.0, , https://doi.org/10.2173/bna.easkin.02, In The Birds of North America (P. G. Rodewald, Editor). Cornell Lab of Ornithology, Ithaca, NY, USA
  • Nathan, R., Getz, W.M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., Smouse, P.E., Movement research (2008) Proceedings of the National Academy of Sciences USA, 105, pp. 19052-19059
  • Osman, M., Vera, C.S., Climate predictability and prediction skill on seasonal time scales over South America from CHFP models (2017) Climate Dynamics, 49, pp. 2365-2383
  • Paruelo, J.M., Lauenroth, W.K., Epstein, H.E., Burke, I.C., Aguiar, M.R., Sala, O.E., Regional climatic similarities in the temperate zones of north and South America (1995) Journal of Biogeography, 22, pp. 915-925
  • Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.-M., Tucker, C.J., Stenseth, N.C., Using the satellite-derived NDVI to assess ecological responses to environmental change (2005) Trends in Ecology & Evolution, 20, pp. 503-510
  • Phillips, R., Silk, J., Croxall, J., Afanasyev, V., Briggs, D., Accuracy of geolocation estimates for flying seabirds (2004) Marine Ecology Progress Series, 266, pp. 265-272
  • Phillips, S.J., Dudík, M., Modeling of species distributions with maxent: New extensions and a comprehensive evaluation (2008) Ecography, 31, pp. 161-175
  • Phillips, S.J., Anderson, R.P., Schapire, R.E., Maximum entropy modeling of species geographic distributions (2006) Ecological Modelling, 190, pp. 231-259
  • Pinheiro, F., Diniz, I.R., Coelho, D., Bandeira, M.P.S., Seasonal pattern of insect abundance in the brazilian cerrado (2002) Austral Ecology, 27, pp. 132-136
  • Polson, D., Hegerl, G.C., Zhang, X., Osborn, T.J., Causes of robust seasonal land precipitation changes (2013) Journal of Climate, 26, pp. 6698-6715
  • Pyle, P., (1997) Identification Guide to North American Birds, Part 1: Columbidae to Ploceidae, , Slate Creek Press, Bolinas, CA, USA
  • Rappole, J.H., Tipton, A.R., New harness design for attachment of radio transmitters to small passerines (1991) Journal of Field Ornithology, 62, pp. 335-337
  • (2017) R: A Language and Environment for Statistical Computing, , https://www.r-project.org/, R Foundation for Statistical Computing, Vienna, Austria
  • Renfrew, R.B., Kim, D., Perlut, N., Smith, J., Fox, J., Marra, P.P., Phenological matching across hemispheres in a longdistance migratory bird (2013) Diversity and Distributions, 19, pp. 1008-1019
  • Robinson, W.D., Bowlin, M.S., Bisson, I., Shamoun-Baranes, J., Thorup, K., Diehl, R.H., Kunz, T.H., Winkler, D.W., Integrating concepts and technologies to advance the study of bird migration (2010) Frontiers in Ecology and the Environment, 8, pp. 354-361
  • Santer, B.D., Mears, C., Wentz, F.J., Taylor, K.E., Gleckler, P.J., Wigley, T.M.L., Barnett, T.P., Klein, S.A., Identification of human-induced changes in atmospheric moisture content (2007) Proceedings of the National Academy of Sciences USA, 104, pp. 15248-15253
  • Schmaljohann, H., Fox, J.W., Bairlein, F., Phenotypic response to environmental cues, orientation and migration costs in songbirds flying halfway around the world (2012) Animal Behaviour, 84, pp. 623-640
  • Silva, J.O., Leal, C.R.O., Espírito-Santo, M.M., Morais, H.C., Seasonal and diel variations in the activity of canopy insect herbivores differ between deciduous and evergreen plant species in a tropical dry forest (2017) Journal of Insect Conservation, 21, pp. 667-676
  • Stanley, C.Q., MacPherson, M., Fraser, K.C., McKinnon, E.A., Stutchbury, B.J.M., Repeat tracking of individual songbirds reveals consistent migration timing but flexibility in route (2012) PLOS One, 7, p. e40688
  • Studds, C.E., McFarland, K.P., Aubry, Y., Rimmer, C.C., Hobson, K.A., Marra, P.P., Wassenaar, L.I., Stablehydrogen isotope measures of natal dispersal reflect observed population declines in a threatened migratory songbird (2012) Diversity and Distributions, 18, pp. 919-930
  • Stutchbury, B.J.M., Tarof, S.A., Done, T., Gow, E., Kramer, P.M., Tautin, J., Fox, J.W., Afanasyev, V., Tracking longdistance songbird migration by using geolocators (2009) Science, 323, p. 896
  • Thorup, K., Tøttrup, A.P., Willemoes, M., Klaassen, R.H.G., Strandberg, R., Vega, M.L., Dasari, H.P., Rahbek, C., Resource tracking within and across continents in long-distance bird migrants (2017) Science Advances, 3, p. e1601360
  • Tøttrup, A.P., Thorup, K., Rainio, K., Yosef, R., Lehikoinen, E., Rahbek, C., Avian migrants adjust migration in response to environmental conditions en route (2008) Biology Letters, 4, pp. 685-688
  • Tulp, I., Schekkerman, H., Has prey availability for arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variation (2008) Arctic, 61, pp. 48-60
  • Van Schaik, C.P., Terborgh, J.W., Wright, S.J., The phenology of tropical forests: Adaptive significance and consequences for primary consumers (1993) Annual Review of Ecology and Systematics, 24, pp. 353-377
  • Warren, D.L., Glor, R.E., Turelli, M., Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution (2008) Evolution, 62, pp. 2868-2883
  • Watts, H.E., Cornelius, J.M., Fudickar, A.M., Pérez, J., Ramenofsky, M., Understanding variation in migratory movements: A mechanistic approach (2018) General and Comparative Endocrinology, 256, pp. 112-122
  • Willett, K.M., Gillett, N.P., Jones, P.D., Thorne, P.W., Attribution of observed surface humidity changes to human influence (2007) Nature, 449, pp. 710-712
  • Williams, H.M., Willemoes, M., Thorup, K., A temporally explicit species distributionmodel for a long distance avianmigrant, the common cuckoo (2017) Journal of Avian Biology, 48, pp. 1624-1636
  • Wolda, H., Seasonal fluctuations in rainfall, food and abundance of tropical insects (1978) The Journal of Animal Ecology, 47, pp. 369-381
  • Wotherspoon, S., Sumner, M., Lisovski, S., (2013) Solar/satellite Geolocation for Animal Tracking, , https://github.com/SWotherspoon/SGAT
  • Yates, C.J., McNeill, A., Elith, J., Midgley, G.F., Assessing the impacts of climate change and land transformation on banksia in the south west australian floristic region (2010) Diversity and Distributions, 16, pp. 187-201
  • Yesson, C., Culham, A., A phyloclimatic study of cyclamen (2006) BMC Evolutionary Biology, 6
  • Yom-Tov, Y., Christie, M.I., Iglesias, G.J., Clutch size in passerines of southern South America (1994) The Condor, 96, pp. 170-177
  • Zimmer, J.T., Notes on migrations of south American birds (1938) The Auk, 55, pp. 405-410

Citas:

---------- APA ----------
MacPherson, M.P., Jahn, A.E., Murphy, M.T., Kim, D.H., Cueto, V.R., Tuero, D.T. & Hill, E.D. (2018) . Follow the rain? Environmental drivers of Tyrannus migration across the New World. Auk, 135(4), 881-894.
http://dx.doi.org/10.1642/AUK-17-209.1
---------- CHICAGO ----------
MacPherson, M.P., Jahn, A.E., Murphy, M.T., Kim, D.H., Cueto, V.R., Tuero, D.T., et al. "Follow the rain? Environmental drivers of Tyrannus migration across the New World" . Auk 135, no. 4 (2018) : 881-894.
http://dx.doi.org/10.1642/AUK-17-209.1
---------- MLA ----------
MacPherson, M.P., Jahn, A.E., Murphy, M.T., Kim, D.H., Cueto, V.R., Tuero, D.T., et al. "Follow the rain? Environmental drivers of Tyrannus migration across the New World" . Auk, vol. 135, no. 4, 2018, pp. 881-894.
http://dx.doi.org/10.1642/AUK-17-209.1
---------- VANCOUVER ----------
MacPherson, M.P., Jahn, A.E., Murphy, M.T., Kim, D.H., Cueto, V.R., Tuero, D.T., et al. Follow the rain? Environmental drivers of Tyrannus migration across the New World. Auk. 2018;135(4):881-894.
http://dx.doi.org/10.1642/AUK-17-209.1