Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Recent high-resolution Atmospheric Imaging Assembly/Solar Dynamics Observatory images show evidence of the development of the Kelvin-Helmholtz (KH) instability, as coronal mass ejections (CMEs) expand in the ambient corona. A large-scale magnetic field mostly tangential to the interface is inferred, both on the CME and on the background sides. However, the magnetic field component along the shear flow is not strong enough to quench the instability. There is also observational evidence that the ambient corona is in a turbulent regime, and therefore the criteria for the development of the instability are a priori expected to differ from the laminar case. To study the evolution of the KH instability with a turbulent background, we perform three-dimensional simulations of the incompressible magnetohydrodynamic equations. The instability is driven by a velocity profile tangential to the CME-corona interface, which we simulate through a hyperbolic tangent profile. The turbulent background is generated by the application of a stationary stirring force. We compute the instability growth rate for different values of the turbulence intensity, and find that the role of turbulence is to attenuate the growth. The fact that KH instability is observed sets an upper limit on the correlation length of the coronal background turbulence. © 2016. The American Astronomical Society. All rights reserved..

Registro:

Documento: Artículo
Título:SIMULATIONS of the KELVIN-HELMHOLTZ INSTABILITY DRIVEN by CORONAL MASS EJECTIONS in the TURBULENT CORONA
Autor:Gómez, D.O.; Deluca, E.E.; Mininni, P.D.
Filiación:Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, United States
Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisica de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:instabilities; magnetohydrodynamics; Sun: coronal mass ejections; turbulence
Año:2016
Volumen:818
Número:2
DOI: http://dx.doi.org/10.3847/0004-637X/818/2/126
Título revista:Astrophysical Journal
Título revista abreviado:Astrophys. J.
ISSN:0004637X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0004637X_v818_n2_p_Gomez

Referencias:

  • Balbus, S.A., Hawley, J.F., (1998) RvMP, 70, p. 1
  • Bartoe, J.D., (1982) AdSpR, 2, p. 185
  • Begelman, M.C., Blandford, R.D., Rees, M.J., (1984) RvMP, 56, p. 255
  • Bodo, G., Massaglia, S., Ferrari, A., Trussoni, E., (1994) A&A, 283, p. 655
  • Braginskii, S.I., (1965) RvPP, 1, p. 205
  • Brandt, J.C., Mendis, D.A., Kennel, C.F., (1979) Solar System Plasma Physics, Vol. 2, p. 253. , Brandt J. C. and Mendis D. A. ed C. F. Kennel et al (Amsterdam: North Holland)
  • Brooks, D.H., Warren, H.P., (2011) ApJL, 727, p. L13
  • Chandrasekhar, S., (1961) Hydrodynamic and Hydromagnetic Stability, , (New York: Oxford Univ. Press)
  • Coyner, A.J., Davila, J.M., (2011) ApJ, 742 (2), p. 115
  • Doschek, G.A., McKenzie, D.E., Warren, H.P., (2014) ApJ, 788 (1), p. 26
  • Doschek, G.A., Warren, H.P., Mariska, J.T., (2008) ApJ, 686 (2), p. 1362
  • Drazin, P.G., (1958) JFM, 4, p. 214
  • Drazin, P.G., Reid, W.H., (1981) Hydrodynamic Stability, , (Cambridge: Cambridge Univ. Press)
  • Dwarkadas, V.V., Balbus, S.A., (1996) ApJ, 467, p. 87
  • Ershkovich, A.I., Nusinov, A.A., Chernikov, A.A., (1973) SvA, 16, p. 705
  • Fairfield, D.H., Otto, A., Mukai, T., (2000) JGR, 105, p. 21159
  • Ferrari, A., Trussoni, E., Zaninetti, L., (1980) MNRAS, 193, p. 469
  • Foullon, C., Verwichte, E., Nakariakov, V.M., Nykyri, K., Farrugia, C.J., (2011) ApJL, 729, p. L8
  • Foullon, C., Verwichte, E., Nykyri, K., Aschwanden, M.J., Hannah, I.G., (2013) ApJ, 767 (2), p. 170
  • Fujimoto, M., Teresawa, T., (1995) JGR, 100, p. 12025
  • Gómez, D.O., Bejarano, C., Mininni, P.D., (2014) PhRvE, 89
  • Gómez, D.O., Mininni, P.D., Dmitruk, P., (2005) PhyS, 116, p. 123
  • Gonzalez, A.G., Gratton, J., (1994) JPlPh, 52, p. 223
  • Hasegawa, A., (1985) AdPhy, 34, p. 1
  • Helmholtz, H.L.F., (1868) Monthly Rep. Royal Prussian Acad. Phil. Berlin, 23, p. 215
  • Lau, Y.Y., Liu, C.S., (1980) PhFl, 23, p. 939
  • Mariska, J.T., (1992) The Solar Transition Region, , (Cambridge: Cambridge Univ. Press)
  • Masters, A., Achilleos, N., Kivelson, M.G., (2010) JGR, 115
  • Miura, A., (1992) JGR, 97, p. 10655
  • Miura, A., Pritchett, P.L., (1982) JGR, 87, p. 7431
  • Mostl, U.V., Temmer, M., Veronig, A.M., (2013) ApJL, 766, p. L12
  • Nykyri, K., Foullon, C., (2013) GeoRL, 40, p. 4154
  • Nykyri, K., Otto, A., (2001) GeoRL, 28, p. 3565
  • Ofman, L., Thompson, B.J., (2011) ApJL, 734, p. L11
  • Parker, E.N., (1958) ApJ, 128, p. 664
  • Poedts, S., Rogava, A.D., Mahajan, S.M., (1998) ApJ, 505 (1), p. 369
  • Prialnik, D., Eviatar, A., Ershcovich, A.I., (1986) JPlPh, 35, p. 209
  • Sundberg, T., Boardsen, S.A., Slavin, J.A., (2011) P&SS, 59, p. 2051
  • Teriaca, L., Doyle, J.G., Erdelyi, R., Sarro, L.M., (1999) A&A, 352, p. L99
  • Thomson, W., (1871) PMag, 42, p. 362. , Thomson (Lord Kelvin) W
  • Tian, H., McIntosh, S.W., Xia, L., He, J., Wang, X., (2012) ApJ, 748 (2), p. 106
  • Wyper, P.F., Pontin, D.I., (2013) PhPl, 20, p. 032117

Citas:

---------- APA ----------
Gómez, D.O., Deluca, E.E. & Mininni, P.D. (2016) . SIMULATIONS of the KELVIN-HELMHOLTZ INSTABILITY DRIVEN by CORONAL MASS EJECTIONS in the TURBULENT CORONA. Astrophysical Journal, 818(2).
http://dx.doi.org/10.3847/0004-637X/818/2/126
---------- CHICAGO ----------
Gómez, D.O., Deluca, E.E., Mininni, P.D. "SIMULATIONS of the KELVIN-HELMHOLTZ INSTABILITY DRIVEN by CORONAL MASS EJECTIONS in the TURBULENT CORONA" . Astrophysical Journal 818, no. 2 (2016).
http://dx.doi.org/10.3847/0004-637X/818/2/126
---------- MLA ----------
Gómez, D.O., Deluca, E.E., Mininni, P.D. "SIMULATIONS of the KELVIN-HELMHOLTZ INSTABILITY DRIVEN by CORONAL MASS EJECTIONS in the TURBULENT CORONA" . Astrophysical Journal, vol. 818, no. 2, 2016.
http://dx.doi.org/10.3847/0004-637X/818/2/126
---------- VANCOUVER ----------
Gómez, D.O., Deluca, E.E., Mininni, P.D. SIMULATIONS of the KELVIN-HELMHOLTZ INSTABILITY DRIVEN by CORONAL MASS EJECTIONS in the TURBULENT CORONA. Astrophys. J. 2016;818(2).
http://dx.doi.org/10.3847/0004-637X/818/2/126