Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The combination of differential emission measure tomography with extrapolation of the photospheric magnetic field allows determination of the electron density and electron temperature along individual magnetic field lines. This is especially useful in quiet-Sun (QS) plasmas where individual loops cannot otherwise be identified. In Paper I, this approach was applied to study QS plasmas during Carrington rotation (CR) 2077 at the minimum between solar cycles (SCs) 23 and 24. In that work, two types of QS coronal loops were identified: "up" loops in which the temperature increases with height, and "down" loops in which the temperature decreases with height. While the first ones were expected, the latter ones were a surprise and, furthermore, were found to be ubiquitous in the low-latitude corona. In the present work, we extend the analysis to 11 CRs around the last solar minimum. We found that the "down" population, always located at low latitudes, was maximum at the time when the sunspot number was minimum, and the number of down loops systematically increased during the declining phase of SC-23 and diminished during the rising phase of SC-24. "Down" loops are found to have systematically larger values of β than do "up" loops. These discoveries are interpreted in terms of excitation of Alfvén waves in the photosphere, and mode conversion and damping in the low corona. © 2013. The American Astronomical Society. All rights reserved..

Registro:

Documento: Artículo
Título:Evolution of the global temperature structure of the solar corona during the minimum between solar cycles 23 and 24
Autor:Manchester IV, W.B.; Nuevo, F.A.; Huang, Z.; Frazin, R.; Jin, M.; Vásquez, A.M.
Filiación:Instituto de Astronomía y Física Del Espacio (CONICET-UBA), FCEN (UBA), CC 67-Suc 28, Ciudad de Buenos Aires, Argentina
Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109, United States
Palabras clave:Sun: corona; Sun: evolution; Sun: magnetic topology; Sun: UV radiation; sunspots
Año:2013
Volumen:773
Número:1
DOI: http://dx.doi.org/10.1088/0004-637X/773/1/9
Título revista:Astrophysical Journal
Título revista abreviado:Astrophys. J.
ISSN:0004637X
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_0004637X_v773_n1_p_ManchesterIV.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0004637X_v773_n1_p_ManchesterIV

Referencias:

  • Aschwanden, M.J., Schrijver, C.J., Analytical approximations to hydrostatic solutions and scaling laws of coronal loops (2002) Astrophysical Journal, Supplement Series, 142 (2), pp. 269-283. , DOI 10.1086/341945
  • Banerjee, D., Pérez-Suárez, D., Doyle, J.G., (2009) A&A, 501, p. 15. , 10.1051/0004-6361/200912242 0004-6361
  • Banerjee, D., Teriaca, L., Doyle, J.G., Wilhelm, K., (1998) A&A, 339, p. 208. , 0004-6361
  • Belcher, J.W., Davis, L., (1971) JGR, 76, p. 3534. , 10.1029/JA076i016p03534 0148-0227
  • Cranmer, S.R., (2002) SSRv, 101, p. 229
  • De Pontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Schrijver, C.J., Title, A.M., Nagata, S., Chromospheric Alfvénic waves strong enough to power the solar wind (2007) Science, 318 (5856), pp. 1574-1577. , DOI 10.1126/science.1151747
  • Dong, C.F., Paty, C.S., (2011) PhPl, 18, p. 030702. , 10.1063/1.3555532 1070-664X
  • Doyle, J.G., Banerjee, D., Perez, M.E., (1998) SoPh, 181, p. 91
  • Frazin, R.A., Vásquez, A.M., Kamalabadi, F., (2009) ApJ, 701 (1), p. 547. , 10.1088/0004-637X/701/1/547 0004-637X 547
  • Goossens, M., Erdélyi, R., Ruderman, M.S., (2011) SSRv, 158, p. 289
  • Hahn, M., Landi, E., Savin, D.W., (2012) ApJ, 753 (1), p. 36. , 10.1088/0004-637X/753/1/36 0004-637X 36
  • Hassler, D.M., Rottman, G.J., Shoub, E.C., Holzer, T.E., (1990) ApJL, 348, p. 77. , 10.1086/185635 0004-637X
  • Heyvaerts, J., Priest, E.R., (1983) A&A, 117, p. 220. , 0004-6361
  • Huang, Z., Frazin, R.A., Landi, E., (2012) ApJ, 755 (2), p. 86. , 10.1088/0004-637X/755/2/86 0004-637X 86
  • Jess, D.B., Mathioudakis, M., Erdélyi, R., (2009) Sci, 323, p. 1582. , 10.1126/science.1168680
  • Jess, D.B., Shelyag, S., Mathioudakis, M., (2012) ApJ, 746 (2), p. 183. , 10.1088/0004-637X/746/2/183 0004-637X 183
  • Kohl, J.L., Esser, R., Gardner, L.D., (1995) SoPh, 162, p. 313
  • Li, J., Raymond, J.C., Acton, L.W., Kohl, J.L., Romoli, M., Noci, G., Naletto, G., Physical Structure of a Coronal Streamer in the Closed-Field Region as Observed From UVCS/SOHO and SXT/YOHKOH (1998) Astrophysical Journal, 506 (1), pp. 431-438. , DOI 10.1086/306244 NUMBER 1
  • Matsumoto, T., Suzuki, T.K., (2012) ApJ, 749 (1), p. 8. , 10.1088/0004-637X/749/1/8 0004-637X 8
  • Matthaeus, W.H., Zank, G.P., Oughton, S., Mullan, D.J., Dmitruk, P., (1999) ApJ, 523 (1), p. 93. , 10.1086/312259 1538-4357 L93
  • McIntosh, S.W., De Pontieu, B., Carlsson, M., (2011) Natur, 475, p. 477. , 10.1038/nature10235
  • Moran, T.G., (2001) A&A, 374, p. 9. , 10.1051/0004-6361:20010643 0004-6361
  • Nuevo, F.A., Vásquez, A.M., Frazin, R.A., Huang, Z., Manchester IV, W.B., (2012) Proc. IAU Symp. 286, Comparative Magnetic Minima: Characterizing Quiet Times in the Sun and Stars, p. 238
  • Prasad, S.K., Singh, J., Ichimoto, K., (2013) ApJL, 765, p. 46. , 10.1088/2041-8205/765/2/L46 0004-637X
  • Riley, P., Linker, J.A., Mikić, Z., (2006) ApJ, 653 (2), p. 1510. , 10.1086/508565 0004-637X 1510
  • Serio, S., Peres, G., Vaiana, G.S., Golub, L., Rosner, R., (1981) ApJ, 243, p. 288. , 10.1086/158597
  • Shearer, P., Frazin, R.A., Hero III, A.O., Gilbert, A.C., (2012) ApJL, 749, p. 8. , 10.1088/2041-8205/749/1/L8 0004-637X
  • Suess, S.T., Wang, A.H., Wu, S.T., (1996) JGR, 101, p. 19957. , 10.1029/96JA01458 0148-0227
  • Tomczyk, S., McIntosh, S.W., (2009) ApJ, 697 (2), p. 1384. , 10.1088/0004-637X/697/2/1384 0004-637X 1384
  • Tomczyk, S., McIntosh, S.W., Keil, S.L., (2007) Sci, 317, p. 1192. , 10.1126/science.1143304
  • Tóth, G., Van Der Holst, B., Huang, Z., (2011) ApJ, 732 (2), p. 102. , 10.1088/0004-637X/732/2/102 0004-637X 102
  • Vásquez, A.M., Frazin, R.A., Huang, Z., Manchester IV, W.B., Shearer, P., (2012) Proc. IAU Symp. 286, Comparative Magnetic Minima: Characterizing Quiet Times in the Sun and Stars, p. 123
  • Vásquez, A.M., Frazin, R.A., Manchester IV, W.B., (2010) ApJ, 715 (2), p. 1352. , 10.1088/0004-637X/715/2/1352 0004-637X 1352
  • Vásquez, A.M., Huang, Z., Manchester IV, W.B., Frazin, R.A., (2011) SoPh, 274, p. 259
  • Vasquez, A.M., Van Ballegooijen, A.A., Raymond, J.C., The effect of proton temperature anisotropy on the solar minimum corona and wind (2003) Astrophysical Journal, 598 (2), pp. 1361-1374. , DOI 10.1086/379008
  • Wang, Y.-M., Sheeley, N.R., Walters, J.H., Brueckner, G.E., Howard, R.A., Michels, D.J., Lamy, P.L., Simnett, G.M., Origin of Streamer Material in the Outer Corona (1998) Astrophysical Journal, 498 (2), pp. L165-L168. , DOI 10.1086/311321 NUMBER 2

Citas:

---------- APA ----------
Manchester IV, W.B., Nuevo, F.A., Huang, Z., Frazin, R., Jin, M. & Vásquez, A.M. (2013) . Evolution of the global temperature structure of the solar corona during the minimum between solar cycles 23 and 24. Astrophysical Journal, 773(1).
http://dx.doi.org/10.1088/0004-637X/773/1/9
---------- CHICAGO ----------
Manchester IV, W.B., Nuevo, F.A., Huang, Z., Frazin, R., Jin, M., Vásquez, A.M. "Evolution of the global temperature structure of the solar corona during the minimum between solar cycles 23 and 24" . Astrophysical Journal 773, no. 1 (2013).
http://dx.doi.org/10.1088/0004-637X/773/1/9
---------- MLA ----------
Manchester IV, W.B., Nuevo, F.A., Huang, Z., Frazin, R., Jin, M., Vásquez, A.M. "Evolution of the global temperature structure of the solar corona during the minimum between solar cycles 23 and 24" . Astrophysical Journal, vol. 773, no. 1, 2013.
http://dx.doi.org/10.1088/0004-637X/773/1/9
---------- VANCOUVER ----------
Manchester IV, W.B., Nuevo, F.A., Huang, Z., Frazin, R., Jin, M., Vásquez, A.M. Evolution of the global temperature structure of the solar corona during the minimum between solar cycles 23 and 24. Astrophys. J. 2013;773(1).
http://dx.doi.org/10.1088/0004-637X/773/1/9