Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The heating and acceleration of the solar wind is an active area of research. Alfvén waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfvén wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfvén wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfvén speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfvén speed profile in the model. We find that, compared to a polytropic solar wind model, the wave-driven model with physical dissipation mechanisms presented in this work is more aligned with an empirical Alfvén speed profile. Therefore, a wave-driven model which includes the effects of SAW damping is a better background to simulate coronal-mass-ejection-driven shocks. © 2012. The American Astronomical Society. All rights reserved.

Registro:

Documento: Artículo
Título:Coronal heating by surface Alfvén wave damping: Implementation in a global magnetohydrodynamics model of the solar wind
Autor:Evans, R.M.; Opher, M.; Oran, R.; Van Der Holst, B.; Sokolov, I.V.; Frazin, R.; Gombosi, T.I.; Vásquez, A.
Filiación:NASA Goddard Space Flight Center, Space Weather Lab, Greenbelt, MD 20771, United States
Astronomy Department, Boston University, 675 Commonwealth Avenue, Boston, MA 02215, United States
Center for Space Environment Modeling, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109, United States
Instituto de Astronomía y Física Del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires, Argentina
Palabras clave:magnetic fields; magnetohydrodynamics (MHD); solar wind; Sun: corona; waves
Año:2012
Volumen:756
Número:2
DOI: http://dx.doi.org/10.1088/0004-637X/756/2/155
Título revista:Astrophysical Journal
Título revista abreviado:Astrophys. J.
ISSN:0004637X
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_0004637X_v756_n2_p_Evans.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0004637X_v756_n2_p_Evans

Referencias:

  • Airapetian, V., Carpenter, K.G., Ofman, L., (2010) ApJ, 723 (2), p. 1210. , 10.1088/0004-637X/723/2/1210 0004-637X 1210
  • Airapetian, V., Ofman, L., Sittler, E.C., Kramar, M., (2011) ApJ, 728 (1), p. 67. , 10.1088/0004-637X/728/1/67 0004-637X 67
  • Allen, L.A., Habbal, S.R., Hu, Y.Q., (1998) J. Geophys. Res., 103, p. 6551. , 10.1029/97JA03435 0148-0227
  • Altschuler, M.D., Newkirk, G., (1969) Sol. Phys., 9, p. 131. , 10.1007/BF00145734 0038-0938
  • Arge, C.N., Odstrcil, D., Pizzo, V.J., Mayer, L.R., (2003) Solar Wind Ten, p. 190
  • Aschwanden, M.J., (2004) Physics of the Solar Corona: An Introduction
  • Aschwanden, M.J., Nightingale, R.W., Andries, J., Goossens, M., Van Doorsselaere, T., Observational tests of damping by resonant absorption in coronal loop oscillations (2003) Astrophysical Journal, 598, pp. 1375-1386. , DOI 10.1086/379104
  • Belcher, J.W., (1971) ApJ, 168, p. 509. , 10.1086/151105
  • Belcher, J.W., Davis Jr., L., (1971) J. Geophys. Res., 76, p. 3534. , 10.1029/JA076i016p03534 0148-0227
  • Brooks, D.H., Warren, H.P., (2011) ApJ, 727 (1), pp. L13. , 10.1088/2041-8205/727/1/L13 2041-8205 L13
  • Brueckner, G.E., Howard, R.A., Koomen, M.J., (1995) Sol. Phys., 162, p. 357. , 10.1007/BF00733434 0038-0938
  • Cane, H.V., Erickson, W.C., Solar type ii radio bursts and IP type II events (2005) Astrophysical Journal, 623, pp. 1180-1194. , DOI 10.1086/428820
  • Chandran, B.D.G., Hollweg, J.V., (2009) ApJ, 707 (2), p. 1659. , 10.1088/0004-637X/707/2/1659 0004-637X 1659
  • Chandran, B.D.G., Pongkitiwanichakul, P., Isenberg, P.A., (2010) ApJ, 722 (1), p. 710. , 10.1088/0004-637X/722/1/710 0004-637X 710
  • Claen, H.T., Aurass, H., (2002) A&A, 384, p. 1098. , 10.1051/0004-6361:20020092 0004-6361
  • Cohen, O., Sokolov, I.V., Roussev, I.I., (2007) ApJ, 654 (2), pp. L163. , 10.1086/511154 1538-4357 L163
  • Coleman Jr., P.J., (1968) ApJ, 153, p. 371. , 10.1086/149674
  • Cranmer, S.R., (2010) ApJ, 710 (1), p. 676. , 10.1088/0004-637X/710/1/676 0004-637X 676
  • Cranmer, S.R., Field, G.B., Kohl, J.L., (1999) ApJ, 518 (2), p. 937. , 10.1086/307330 0004-637X 937
  • Cranmer, S.R., Van Ballegooijen, A.A., On the generation, propagation, and reflection of Alfvén waves from the solar photosphere to the distant heliosphere (2005) Astrophysical Journal, Supplement Series, 156 (2), pp. 265-293. , DOI 10.1086/426507
  • Cranmer, S.R., Van Ballegooijen, A.A., Edgar, R.J., (2007) ApJS, 171 (2), p. 520. , 10.1086/518001 0067-0049 520
  • De Moortel, I., Hood, A.W., Ireland, J., Arber, T.D., (1999) A&A, 346, p. 641. , 0004-6361
  • De Pontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Schrijver, C.J., Title, A.M., Nagata, S., Chromospheric Alfvénic waves strong enough to power the solar wind (2007) Science, 318 (5856), pp. 1574-1577. , DOI 10.1126/science.1151747
  • Dewar, R.L., (1970) Phys. Fluids, 13, p. 2710. , 10.1063/1.1692854 0031-9171
  • Dmitruk, P., Matthaeus, W.H., Milano, L.J., Oughton, S., Zank, G.P., Mullan, D.J., Coronal heating distribution due to low-frequency, wave-driven turbulence (2002) Astrophysical Journal, 575, pp. 571-577. , DOI 10.1086/341188
  • Dobrzycka, D., Cranmer, S.R., Panasyuk, A.V., Strachan, L., Kohl, J.L., (1999) J. Geophys. Res., 104, p. 9791. , 10.1029/1998JA900129 0148-0227
  • Downs, C., Roussev, I.I., Van Der Holst, B., (2010) ApJ, 712 (2), p. 1219. , 10.1088/0004-637X/712/2/1219 0004-637X 1219
  • Edmondson, J.K., (2011) Space Sci. Rev., 38, p. 1. , 0038-6308
  • Erdélyi, R., (2005) Proc. British-Romanian-Hungarian N+N+N Workshop for Young Researchers on Plasma and Astrophysics: From Laboratory to Outer Space, Vol. 15, p. 7
  • Evans, R.M., Opher, M., Jatenco-Pereira, V., Gombosi, T.I., (2009) ApJ, 703 (1), p. 179. , 10.1088/0004-637X/703/1/179 0004-637X 179
  • Evans, R.M., Opher, M., Manchester IV, W.B., Gombosi, T.I., (2008) ApJ, 687 (2), p. 1355. , 10.1086/592016 0004-637X 1355
  • Frazin, R.A., Vásquez, A.M., Kamalabadi, F., (2009) ApJ, 701 (1), p. 547. , 10.1088/0004-637X/701/1/547 0004-637X 547
  • Goldstein, B.E., Neugebauer, M., Phillips, J.L., (1996) A&A, 316, p. 296. , 0004-6361
  • Goossens, M., Andries, J., Aschwanden, M.J., (2002) A&A, 394, pp. L39. , 10.1051/0004-6361:20021378 0004-6361
  • Goossens, M., Erdélyi, R., Ruderman, M.S., (2011) Space Sci. Rev., 158, p. 289. , 10.1007/s11214-010-9702-7 0038-6308
  • Goossens, M., Ruderman, M.S., (1995) Phys. Scr. T, 60, p. 171. , 10.1088/0031-8949/1995/T60/021 0281-1847
  • Gopalswamy, N., Aguilar-Rodriguez, E., Yashiro, S., (2005) J. Geophys. Res. (Space Phys.), 110, p. 12. , 0148-0227
  • Gopalswamy, N., Kaiser, M.L., Solar eruptions and long wavelength radio bursts: The 1997 May 12 event (2002) Advances in Space Research, 29 (3), pp. 307-312. , DOI 10.1016/S0273-1177(01)00589-0, PII S0273117701005890, Structure, energetics and Dynamics of the Corona and the Heliosphere during the Rising Phase of the 23rd Solar Cycle
  • Gopalswamy, N., Lara, A., Kaiser, M.L., Bougeret, J., (2001) J. Geophys. Res., 106, p. 25261. , 10.1029/2000JA004025 0148-0227
  • Groth, C.P.T., De Zeeuw, D.L., Gombosi, T.I., Powell, K.G., (2000) J. Geophys. Res., 105, p. 25053. , 10.1029/2000JA900093 0148-0227
  • Hartmann, L., MacGregor, K.B., (1980) ApJ, 242, p. 260. , 10.1086/158461
  • Hasegawa, A., Uberoi, C., (1982) The Alfvén Wave
  • Heyvaerts, J., Priest, E.R., (1983) A&A, 117, p. 220. , 0004-6361
  • Hollweg, J.V., (1986) J. Geophys. Res., 91, p. 4111. , 10.1029/JA091iA04p04111 0148-0227
  • Hollweg, J.V., (1987) ApJ, 312, p. 880. , 10.1086/164934
  • Hollweg, J.V., (1997) J. Geophys. Res., 102, p. 24127. , 10.1029/97JA02041 0148-0227
  • Ionson, J.A., (1978) ApJ, 226, p. 650. , 10.1086/156648
  • Isenberg, P.A., Lee, M.A., Hollweg, J.V., (2001) J. Geophys. Res., 106, p. 5649. , 10.1029/2000JA000099 0148-0227
  • Jacques, S.A., (1977) ApJ, 215, p. 942. , 10.1086/155430
  • Jatenco-Pereira, V., Opher, R., (1989) A&A, 209, p. 327. , 0004-6361
  • Jin, M., Manchester, W.B., Van Der Holst, B., (2012) ApJ, 745 (1), p. 6. , 10.1088/0004-637X/745/1/6 0004-637X 6
  • Klassen, A., Bothmer, V., Mann, G., (2002) A&A, 385, p. 1078. , 10.1051/0004-6361:20020205 0004-6361
  • Klimchuk, J.A., On solving the coronal heating problem (2006) Solar Physics, 234 (1), pp. 41-77. , DOI 10.1007/s11207-006-0055-z
  • Kohl, J.L., Esser, R., Gardner, L.D., (1995) Sol. Phys., 162, p. 313. , 10.1007/BF00733433 0038-0938
  • Leake, J.E., Arber, T.D., Khodachenko, M.L., Collisional dissipation of Alfvén waves in a partially ionised solar chromosphere (2005) Astronomy and Astrophysics, 442 (3), pp. 1091-1098. , DOI 10.1051/0004-6361:20053427
  • Lee, M.A., Roberts, B., (1986) ApJ, 301, p. 430. , 10.1086/163911
  • Lionello, R., Linker, J.A., Mikić, Z., (2009) ApJ, 690 (1), p. 902. , 10.1088/0004-637X/690/1/902 0004-637X 902
  • Lionello, R., Linker, J.A., Mikic, Z., Riley, P., Velli, M., (2010) American Astronomical Society Meeting Abstracts, 216, p. 30301
  • Loesch, C., Opher, M., Alves, M.V., Evans, R.M., Manchester, W.B., (2011) J. Geophys. Res. (Space Phys.), 116, pp. A04106. , 10.1029/2010JA015582 0148-0227
  • Mann, G., Jansen, F., MacDowall, R.J., Kaiser, M.L., Stone, R.G., (1999) A&A, 348, p. 614. , 0004-6361
  • Mann, G., Klassen, A., Aurass, H., Classen, H., (2003) A&A, 400, p. 329. , 10.1051/0004-6361:20021593 0004-6361
  • Matthaeus, W.H., Dmitruk, P., Oughton, S., Mullan, D., (2003) Solar Wind Ten, p. 427
  • McComas, D.J., Barraclough, B.L., Funsten, H.O., (2000) J. Geophys. Res., 105, p. 10419. , 10.1029/1999JA000383 0148-0227
  • McIntosh, S.W., De Pontieu, B., Carlsson, M., (2011) Nature, 475, p. 477. , 10.1038/nature10235
  • Mikić, Z., Linker, J.A., Schnack, D.D., Lionello, R., Tarditi, A., (1999) Phys. Plasmas, 6, p. 2217. , 10.1063/1.873474
  • Narain, U., Karesh Kumar Sharma, Nonlinear Viscous Damping of Surface Alfven Waves in Polar Coronal Holes (1998) Solar Physics, 181 (2), pp. 287-293. , DOI 10.1023/A:1005003204202
  • Narain, U., Ulmschneider, P., (1996) Space Sci. Rev., 75, p. 453. , 10.1007/BF00833341 0038-6308
  • Newkirk Jr., G., (1961) ApJ, 133, p. 983. , 10.1086/147104
  • Ofman, L., (2010) Living Rev. Sol. Phys., 7, p. 4. , 1614-4961
  • Ofman, L., Aschwanden, M.J., Damping time scaling of coronal loop oscillations deduced from Transition Region and Coronal Explorer observations (2002) Astrophysical Journal, 576, pp. L153-L156. , DOI 10.1086/343886
  • Ofman, L., Davila, J.M., (1998) J. Geophys. Res., 103, p. 23677. , 10.1029/98JA01996 0148-0227
  • Oran, R., Sokolov, I.V., Roussev, I.I., (2010) Numerical Modeling of Space Plasma Flows, Astronum-2009, p. 207
  • Parker, E.N., (1958) ApJ, 128, p. 664. , 10.1086/146579
  • Parker, E.N., (1965) Space Sci. Rev., 4, p. 666. , 10.1007/BF00216273 0038-6308
  • Parker, E.N., (1988) ApJ, 330, p. 474. , 10.1086/166485
  • Parker, E.N., (1991) ApJ, 376, p. 355. , 10.1086/170285
  • Poedts, S., Goossens, M., Kerner, W., (1990) ApJ, 360, p. 279. , 10.1086/169118
  • Rappazzo, A.F., Velli, M., Einaudi, G., Dahlburg, R.B., (2007) ApJ, 657 (1), pp. L47. , 10.1086/512975 1538-4357 L47
  • Riley, P., Gosling, J.T., Pizzo, V.J., (2001) J. Geophys. Res., 106, p. 8291. , 10.1029/2000JA000276 0148-0227
  • Riley, P., Lionello, R., Linker, J.A., (2011) Sol. Phys., 274, p. 361. , 10.1007/s11207-010-9698-x 0038-0938
  • Roussev, I.I., Gombosi, T.I., Sokolov, I.V., Velli, M., Manchester IV, W., DeZeeuw, D.L., Liewer, P., Luhmann, J., A three-dimensional model of the solar wind incorporating solar magnetogram observations (2003) Astrophysical Journal, 595, pp. L57-L61. , DOI 10.1086/378878
  • Ruderman, M.S., Goldstein, M.L., Roberts, D.A., Deane, A., Ofman, L., (1999) J. Geophys. Res., 104, p. 17057. , 10.1029/1999JA900144 0148-0227
  • Ruderman, M.S., Nakariakov, V.M., Roberts, B., (1998) A&A, 338, p. 1118. , 0004-6361
  • Sakai, J.-I., Takahata, A., Sokolov, I.V., (2001) ApJ, 556 (2), p. 905. , 10.1086/321622 0004-637X 905
  • Sittler Jr., E.C., Guhathakurta, M., (1999) ApJ, 523 (2), p. 812. , 10.1086/307742 0004-637X 812
  • Sokolov, I.V., Roussev, I.I., Skender, M., Gombosi, T.I., Usmanov, A.V., (2009) ApJ, 696 (1), p. 261. , 10.1088/0004-637X/696/1/261 0004-637X 261
  • Soler, R., Oliver, R., Ballester, J.L., (2011) ApJ, 726 (2), p. 102. , 10.1088/0004-637X/726/2/102 0004-637X 102
  • Strachan, L., Panasyuk, A.V., Kohl, J.L., Lamy, P., (2012) ApJ, 745 (1), p. 51. , 10.1088/0004-637X/745/1/51 0004-637X 51
  • Suess, S.T., Wang, A.-H., Wu, S.T., Poletto, G., McComas, D.J., (1999) J. Geophys. Res., 104, p. 4697. , 10.1029/1998JA900086 0148-0227
  • Suzuki, T.K., Inutsuka, S., (2006) J. Geophys. Res. (Space Phys.), 111, p. 6101. , 10.1029/2005JA011502 0148-0227
  • Terradas, J., Goossens, M., Verth, G., (2010) A&A, 524, pp. A23. , 10.1051/0004-6361/201014845 0004-6361
  • Tomczyk, S., McIntosh, S.W., (2009) ApJ, 697 (2), p. 1384. , 10.1088/0004-637X/697/2/1384 0004-637X 1384
  • Tomczyk, S., McIntosh, S.W., Keil, S.L., (2007) Science, 317, p. 1192. , 10.1126/science.1143304
  • Toth, G., Van Der Holst, B., Sokolov, I.V., (2011) J. Comput. Phys., 231 (3), p. 870. , 10.1016/j.jcp.2011.02.006 0021-9991
  • Usmanov, A.V., Goldstein, M.L., (2003) J. Geophys. Res. (Space Phys.), 108, p. 1354. , 10.1029/2002JA009777 0148-0227
  • Usmanov, A.V., Goldstein, M.L., Besser, B.P., Fritzer, J.M., (2000) J. Geophys. Res., 105, p. 12675. , 10.1029/1999JA000233 0148-0227
  • Usmanov, A.V., Matthaeus, W.H., Breech, B.A., Goldstein, M.L., (2011) ApJ, 727 (2), p. 84. , 10.1088/0004-637X/727/2/84 0004-637X 84
  • Van Ballegooijen, A.A., Asgari-Targhi, M., Cranmer, S.R., Deluca, E.E., (2011) ApJ, 736 (1), p. 3. , 10.1088/0004-637X/736/1/3 0004-637X 3
  • Van Der Holst, B., Manchester, W.B., Frazin, R.A., (2010) ApJ, 725 (1), p. 1373. , 10.1088/0004-637X/725/1/1373 0004-637X 1373
  • Vásquez, A.M., Frazin, R.A., Manchester, W.B., (2010) ApJ, 715 (2), p. 1352. , 10.1088/0004-637X/715/2/1352 0004-637X 1352
  • Vásquez, A.M., Huang, Z., Manchester, W.B., Frazin, R.A., (2011) Sol. Phys., 274, p. 259. , 10.1007/s11207-010-9706-1 0038-0938
  • Velli, M., (1994) Adv. Space Res., 14, p. 123. , 10.1016/0273-1177(94)90171-6 0273-1177
  • Verdini, A., Velli, M., (2007) ApJ, 662 (1), p. 669. , 10.1086/510710 0004-637X 669
  • Verdini, A., Velli, M., Matthaeus, W.H., Oughton, S., Dmitruk, P., (2010) ApJ, 708 (2), pp. L116. , 10.1088/2041-8205/708/2/L116 2041-8205 L116
  • Verth, G., Terradas, J., Goossens, M., (2010) ApJ, 718 (2), pp. L102. , 10.1088/2041-8205/718/2/L102 2041-8205 L102
  • Wentzel, D.G., (1979) ApJ, 227, p. 319. , 10.1086/156732
  • Zangrilli, L., Nicolosi, P., Poletto, G., (1999) A&A, 342, p. 592. , 0004-6361

Citas:

---------- APA ----------
Evans, R.M., Opher, M., Oran, R., Van Der Holst, B., Sokolov, I.V., Frazin, R., Gombosi, T.I.,..., Vásquez, A. (2012) . Coronal heating by surface Alfvén wave damping: Implementation in a global magnetohydrodynamics model of the solar wind. Astrophysical Journal, 756(2).
http://dx.doi.org/10.1088/0004-637X/756/2/155
---------- CHICAGO ----------
Evans, R.M., Opher, M., Oran, R., Van Der Holst, B., Sokolov, I.V., Frazin, R., et al. "Coronal heating by surface Alfvén wave damping: Implementation in a global magnetohydrodynamics model of the solar wind" . Astrophysical Journal 756, no. 2 (2012).
http://dx.doi.org/10.1088/0004-637X/756/2/155
---------- MLA ----------
Evans, R.M., Opher, M., Oran, R., Van Der Holst, B., Sokolov, I.V., Frazin, R., et al. "Coronal heating by surface Alfvén wave damping: Implementation in a global magnetohydrodynamics model of the solar wind" . Astrophysical Journal, vol. 756, no. 2, 2012.
http://dx.doi.org/10.1088/0004-637X/756/2/155
---------- VANCOUVER ----------
Evans, R.M., Opher, M., Oran, R., Van Der Holst, B., Sokolov, I.V., Frazin, R., et al. Coronal heating by surface Alfvén wave damping: Implementation in a global magnetohydrodynamics model of the solar wind. Astrophys. J. 2012;756(2).
http://dx.doi.org/10.1088/0004-637X/756/2/155