Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The line-of-sight magnetograms from Solar Optical Telescope Narrowband Filter Imager observations of NOAA Active Region 10930 have been used to study the evolution of spinning and braiding helicities over a period of five days starting from 2006 December 9. The north (N) polarity sunspot was the follower and the south (S) polarity sunspot was the leader. The N-polarity sunspot in the active region was rotating in the counterclockwise direction. The rate of rotation was small during the first two days of observations and it increased up to 8°hr-1 on the third day of the observations. On the fourth and fifth days it remained at 4°hr-1 with small undulations in its magnitude. The sunspot rotated about 260° in the last three days. The S-polarity sunspot did not complete more than 20° in five days. However, it changed its direction of rotation five times over a period of five days and injected both the positive and negative type of spin helicity fluxes into the corona. Through the five days, both the positive and negative sunspot regions injected equal amounts of spin helicity. The total injected helicity is predominantly negative in sign. However, the sign of the spin and braiding helicity fluxes computed over all the regions were reversed from negative to positive five times during the five-day period of observations. The reversal in spinning helicity flux was found before the onset of the X3.4-class flare, too. Though, the rotating sunspot has been observed in this active region, the braiding helicity has contributed more to the total accumulated helicity than the spinning helicity. The accumulated helicity is in excess of -7 × 1043Mx2 over a period of five days. Before the X3.4-class flare that occurred on 2006 December 13, the rotation speed and spin helicity flux increased in the S-polarity sunspot. Before the flare, the total injected helicity was larger than -6 × 1043Mx2. The observed reversal in the sign of spinning and braiding helicity fluxes could be the signature of the emergence of a twisted flux tube, which acquires the writhe of an opposite sign. The magnetic cloud associated with the ejected mass has carried about -7 × 1041Mx2 of helicity. A time integration of helicity flux of about 1.2hr integrated backward in time of the observation of the coronal mass ejection is sufficient for this event. © 2011. The American Astronomical Society. All rights reserved.

Registro:

Documento: Artículo
Título:Evolution of spinning and braiding helicity fluxes in solar active region NOAA 10930
Autor:Ravindra, B.; Yoshimura, K.; Dasso, S.
Filiación:Indian Institute of Astrophysics, Koramangala, Bangalore 560 034, India
Department of Physics, Montana State University, Bozeman, MT 59717, United States
Instituto de Astronomía y Física Del Espacio (CONICET-UBA), 1428 Buenos Aires, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales (UBA), 1428 Buenos Aires, Argentina
Palabras clave:Sun: coronal mass ejections (CMEs); Sun: evolution; Sun: flares; sunspots
Año:2011
Volumen:743
Número:1
DOI: http://dx.doi.org/10.1088/0004-637X/743/1/33
Título revista:Astrophysical Journal
Título revista abreviado:Astrophys. J.
ISSN:0004637X
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_0004637X_v743_n1_p_Ravindra.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0004637X_v743_n1_p_Ravindra

Referencias:

  • Abramenko, V., Yurchyshyn, V., Wang, H., (2008) ApJ, 681 (2), p. 1669
  • Barnes, G., Longcope, D.W., Leka, K.D., (2005) ApJ, 629 (1), p. 561
  • Berger, M.A., (1999) Geophysical Monograph, Magnetic Helicity in Space and Laboratory Plasmas, 111, p. 1. , ed. M. R. Brown, R. C. Canfield, & A. A. Pevtsov (Washington, DC: AGU Press)
  • Brown, D.S., Nightingale, R.W., Alexander, D., (2003) Sol. Phys., 216, p. 79
  • Brueckner, G.E., Howard, R.A., Koomen, M.J., (1995) Sol. Phys., 162, p. 357
  • Chae, J., Moon, Y.-J., Park, Y.-D., (2007) PASJ, 59, p. 619
  • Chae, J., Wang, H., Qiu, J., (2001) ApJ, 560 (1), p. 476
  • Dasso, S., (2009) IAU Symp. 257, Universal Heliophysical Processes, p. 379. , ed. N. Gopalswamy & D. F. Webb (Cambridge: Cambridge Univ. Press)
  • Dasso, S., Mandrini, C.H., Démoulin, P., Farrugia, C.J., (2003) J. Geophys. Res., 108, p. 1362
  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L., Gulisano, A.M., (2005) Adv. Space Res., 35, p. 711
  • Dasso, S., Mandrini, C.H., Schmieder, B., (2009) J. Geophys. Res., 114, p. 02109
  • Démoulin, P., (2008) Ann. Geophys., 26, p. 3113
  • Démoulin, P., Berger, M.A., (2003) Sol. Phys., 215, p. 203
  • Fan, Y., Gibson, S.E., (2004) ApJ, 609 (2), p. 1123
  • Guo, Y., Ding, M.D., Wiegelmann, T., Li, H., (2008) ApJ, 679 (2), p. 1629
  • Hagenaar, H.J., (1999), PhD thesis, Univ. Utrecht; Harra, L.K., Mandrini, C.H., Dasso, S., (2011) Sol. Phys., 268, p. 213
  • Ichimoto, K., Lites, B., Elmore, D., (2008) Sol. Phys., 249, p. 233
  • Jing, J., Chae, J., Wang, H., (2008) ApJ, 672 (1), p. 73
  • Jing, J., Tan, C., Yuan, Y., (2010) ApJ, 713 (1), p. 440
  • Jing, J., Wiegelmann, T., Suematsu, Y., Kubo, M., Wang, H., (2008) ApJ, 676 (1), p. 81
  • Klein, L.W., Burlaga, L.F., (1982) J. Geophys. Res., 87, p. 613
  • Kosugi, T., Matsuzaki, K., Sakao, T., (2007) Sol. Phys., 243, p. 3
  • Kubo, M., Yokoyama, T., Katsukawa, Y., (2007) PASJ, 59, p. 779
  • Kusano, K., Maeshiro, T., Yokoyama, T., Sakurai, T., (2004) ApJ, 610 (1), p. 537
  • Lepping, R.P., Burlaga, L.F., Jones, J.A., (1990) J. Geophys. Res., 95, p. 11957
  • Liu, Y., Luhmann, J.G., Müller-Mellin, R., (2008) ApJ, 689 (1), p. 563
  • Longcope, D.W., Ravindra, B., Barnes, G., (2007) ApJ, 668 (1), p. 571
  • Longcope, D.W., Welsch, B.T., (2000) ApJ, 545 (2), p. 1089
  • Low, B.C., (1994) Phys. Plasmas, 1, p. 1684
  • Low, B.C., (1996) Sol. Phys., 167, p. 217
  • Lundquist, S., (1950) Ark. Fys., 2, p. 361
  • Luoni, M.L., Mandrini, C.H., Dasso, S., Van Driel-Gesztelyi, L., Démoulin, P., (2005) J. Atmos. Terr. Phys., 67, p. 1734
  • Lynch, B.J., Zurbuchen, T.H., Fisk, L.A., Antiochos, S.K., (2003) J. Geophys. Res., 108, p. 1239
  • Magara, T., (2009) ApJ, 702 (1), p. 386
  • Mandrini, C.H., Pohjolainen, S., Dasso, S., (2005) A&A, 434, p. 725
  • Min, S., Chae, J., (2009) Sol. Phys., 258, p. 203
  • Moon, Y.-J., Chae, J., Wang, H., Choe, G.S., Park, Y.D., (2002) ApJ, 580 (1), p. 528
  • Nandy, D., (2006) J. Geophys. Res. (Space Physics), 111, pp. 12S01
  • Nindos, A., Zhang, H., (2002) ApJ, 573 (2), p. 133
  • Nindos, A., Zhang, J., Zhang, H., (2003) ApJ, 594 (2), p. 1033
  • November, L.J., Simon, G.W., (1988) ApJ, 333, p. 427
  • Park, S.-H., Chae, J., Jing, J., Tan, C., Wang, H., (2010) ApJ, 720 (2), p. 1102
  • Pevtsov, A.A., Maleev, V.M., Longcope, D.W., (2003) ApJ, 593 (2), p. 1217
  • Ravindra, B., (2006) Sol. Phys., 237, p. 297
  • Ravindra, B., Howard, T.A., (2010) Bull. Astron. Soc. India, 38, p. 147
  • Ravindra, B., Longcope, D.W., (2010) Astrophysics and Space Science Proceedings: Magnetic Coupling between the Interior and Atmosphere of the Sun, p. 448
  • Ravindra, B., Venkatakrishnan, P., Kumar, B., (2004) Sol. Phys., 225, p. 47
  • Ravindra, B., Venkatakrishnan, P., Tiwari, S.K., (2011) Adv. Geosci. Sol. Terres., 27, p. 153
  • Scherrer, P.H., Bogart, R.S., Bush, R.I., (1995) Sol. Phys., 162, p. 129
  • Schrijver, C.J., De Rosa, M.L., Metcalf, T., (2008) ApJ, 675 (2), p. 1637
  • Suematsu, Y., Tsuneta, S., Ichimoto, K., (2008) Sol. Phys., 249, p. 197
  • Title, A.M., Tarbell, T.D., Topka, K.P., (1989) ApJ, 336, p. 475
  • Tiwari, S.K., Joshi, J., Gosain, S., Venkatakrishnan, P., (2008) Astrophysics and Space Science Proceedings: Turbulence, Dynamos, Accretion Disks, Pulsars and Collective Plasma Processes, p. 329
  • Tsuneta, S., Ichimoto, K., Katsukawa, Y., (2008) Sol. Phys., 249, p. 167
  • Welsch, B.T., Longcope, D.W., (2003) ApJ, 588 (1), p. 620
  • Yan, X.-L., Qu, Z.-Q., Xu, C.-L., Xue, Z.-K., Kong, D.-F., (2009) Res. Astron. Astrophys., 9 (5), p. 596
  • Yang, S., Büchner, J., Zhang, H., (2009) ApJ, 695 (1), p. 25
  • Yokoyama, T., Kusano, K., Maeshiro, T., Sakurai, T., (2003) Adv. Space Res., 32, p. 1949
  • Zhang, J., Li, L., Song, Q., (2007) ApJ, 662 (1), p. 35
  • Zhang, Y., Tan, B., Yan, Y., (2008) ApJ, 682 (2), p. 133

Citas:

---------- APA ----------
Ravindra, B., Yoshimura, K. & Dasso, S. (2011) . Evolution of spinning and braiding helicity fluxes in solar active region NOAA 10930. Astrophysical Journal, 743(1).
http://dx.doi.org/10.1088/0004-637X/743/1/33
---------- CHICAGO ----------
Ravindra, B., Yoshimura, K., Dasso, S. "Evolution of spinning and braiding helicity fluxes in solar active region NOAA 10930" . Astrophysical Journal 743, no. 1 (2011).
http://dx.doi.org/10.1088/0004-637X/743/1/33
---------- MLA ----------
Ravindra, B., Yoshimura, K., Dasso, S. "Evolution of spinning and braiding helicity fluxes in solar active region NOAA 10930" . Astrophysical Journal, vol. 743, no. 1, 2011.
http://dx.doi.org/10.1088/0004-637X/743/1/33
---------- VANCOUVER ----------
Ravindra, B., Yoshimura, K., Dasso, S. Evolution of spinning and braiding helicity fluxes in solar active region NOAA 10930. Astrophys. J. 2011;743(1).
http://dx.doi.org/10.1088/0004-637X/743/1/33