Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The study of the evolution of a suprathermal electron beam traveling through a background plasma is relevant to the physics of solar flares and their associated type III solar radio bursts. As they evolve, guided by the coronal magnetic field lines, these beams generate Langmuir turbulence. The beam-generated turbulence is in turn responsible for the emission of radio photons at the second harmonic of the local plasma frequency, which are observed during type III solar radio bursts. To generate the radio emission, the beam-aligned Langmuir waves must coalesce, and therefore, a process capable of redirecting the turbulence in an effective fashion is required. Different theoretical models identify the electrostatic (ES) decay process L1 → L2 - S (where L indicates a Langmuir wave and S an ion-acoustic wave) as the redirecting mechanism for the L waves. Two different regimes have been proposed to play a key role: backscattering and diffusive (small-angle) scattering. This paper is a comparative analysis of the ES decay rate for each regime and of the different observable characteristics that are expected for the resulting ion-acoustic waves.

Registro:

Documento: Artículo
Título:Electrostatic decay of beam-generated plasma turbulence
Autor:Vásquez, A.M.; Gómez, D.O.
Filiación:Inst. de Astron./Fis. del Espacio, Casilla de Correos 67, Succursale 28, 1428 Buenos Aires, Argentina
Department of Physics, University of Buenos Aires, Argentina
Palabras clave:Sun: corona; Sun: radio radiation; Turbulence
Año:2004
Volumen:607
Número:2 I
Página de inicio:1024
Página de fin:1031
DOI: http://dx.doi.org/10.1086/381934
Título revista:Astrophysical Journal
Título revista abreviado:Astrophys. J.
ISSN:0004637X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0004637X_v607_n2I_p1024_Vasquez

Referencias:

  • Cairns, I.H., (1987) J. Plasma Phys., 38, p. 179
  • Cairns, I.H., Robinson, P.A., (1995) ApJ, 453, p. 959
  • Edney, S.D., Robinson, P.A., (2001) Phys. Plasmas, 8, p. 428
  • Emslie, A.G., Smith, D.F., (1984) ApJ, 279, p. 882
  • Hamilton, R.J., Petrosian, V., (1987) ApJ, 321, p. 721
  • Melrose, D.B., (1982) Sol. Phys., 79, p. 173
  • Thejappa, G., MacDowall, R.J., (1998) ApJ, 498, p. 465
  • Thejappa, G., MacDowall, R.J., Scime, E.E., Littleton, J.E., (2003) J. Geophys. Res., 108, pp. SSH 9-1
  • Tsytovich, V.N., (1970) Nonlinear Effects in Plasma, , New York: Plenum
  • Vásquez, A.M., Gómez, D.O., (1997) ApJ, 484, p. 463
  • Vásquez, A.M., Gómez, D.O., Ferro Fontán, C., (2002) ApJ, 564, p. 1035

Citas:

---------- APA ----------
Vásquez, A.M. & Gómez, D.O. (2004) . Electrostatic decay of beam-generated plasma turbulence. Astrophysical Journal, 607(2 I), 1024-1031.
http://dx.doi.org/10.1086/381934
---------- CHICAGO ----------
Vásquez, A.M., Gómez, D.O. "Electrostatic decay of beam-generated plasma turbulence" . Astrophysical Journal 607, no. 2 I (2004) : 1024-1031.
http://dx.doi.org/10.1086/381934
---------- MLA ----------
Vásquez, A.M., Gómez, D.O. "Electrostatic decay of beam-generated plasma turbulence" . Astrophysical Journal, vol. 607, no. 2 I, 2004, pp. 1024-1031.
http://dx.doi.org/10.1086/381934
---------- VANCOUVER ----------
Vásquez, A.M., Gómez, D.O. Electrostatic decay of beam-generated plasma turbulence. Astrophys. J. 2004;607(2 I):1024-1031.
http://dx.doi.org/10.1086/381934