Artículo

Estamos trabajando para conseguir la versión final de este artículo
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Aims. Estimating molecular abundances ratios from directly measuring the emission of the molecules toward a variety of interstellar environments is indeed very useful to advance our understanding of the chemical evolution of the Galaxy, and hence of the physical processes related to the chemistry. It is necessary to increase the sample of molecular clouds, located at different distances, in which the behavior of molecular abundance ratios, such as the 13CO/C18O ratio, is studied in detail. Methods. We selected the well-studied high-mass star-forming region G29.96-0.02, located at a distance of about 6.2 kpc, which is an ideal laboratory to perform this type of study. To study the 13CO/C18O abundance ratio (X13/18) toward this region, we used 12CO J = 3-2 data obtained from the CO High-Resolution Survey, 13CO and C18O J = 3-2 data from the 13CO/C18O (J = 3-2) Heterodyne Inner Milky Way Plane Survey, and 13CO and C18O J = 2-1 data retrieved from the CDS database that were observed with the IRAM 30 m telescope. The distribution of column densities and X13/18 throughout the extension of the analyzed molecular cloud was studied based on local thermal equilibrium (LTE) and non-LTE methods. Results. Values of X13/18 between 1.5 and 10.5, with an average of about 5, were found throughout the studied region, showing that in addition to the dependency of X13/18 and the galactocentric distance, the local physical conditions may strongly affect this abundance ratio. We found that correlating the X13/18 map with the location of the ionized gas and dark clouds allows us to suggest in which regions the far-UV radiation stalls in dense gaseous components, and in which regions it escapes and selectively photodissociates the C18O isotope. The non-LTE analysis shows that the molecular gas has very different physical conditions, not only spatially throughout the cloud, but also along the line of sight. This type of study may represent a tool for indirectly estimating (from molecular line observations) the degree of photodissociation in molecular clouds, which is indeed useful to study the chemistry in the interstellar medium. © ESO 2018.

Registro:

Documento: Artículo
Título:Mapping the 13CO/C18O abundance ratio in the massive star-forming region G29.96-0.02
Autor:Paron, S.; Areal, M.B.; Ortega, M.E.
Filiación:CONICET, Universidad de Buenos Aires, Instituto de Astronomía y Física del Espacio, CC 67, Suc. 28, Buenos Aires, 1428, Argentina
Universidad de Buenos Aires, Facultad de Arquitectura, Diseño y Urbanismo, Buenos Aires, Argentina
Palabras clave:Galaxy: abundances; HII regions; ISM: abundances; ISM: molecules; Stars: formation; Galaxies; Giant stars; Molecules; Surveys; Galaxy: abundances; H II regions; ISM: abundance; ISM: molecules; Stars: formation; Ionization of gases
Año:2018
Volumen:617
DOI: http://dx.doi.org/10.1051/0004-6361/201833658
Título revista:Astronomy and Astrophysics
Título revista abreviado:Astron. Astrophys.
ISSN:00046361
CODEN:AAEJA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00046361_v617_n_p_Paron

Referencias:

  • Areal, M.B., Paron, S., Celis Peña, M., Ortega, M.E., (2018) A&A, 612, p. A117
  • Beltrán, M.T., Olmi, L., Cesaroni, R., (2013) A&A, 552, p. A123
  • Beuther, H., Zhang, Q., Bergin, E.A., (2007) A&A, 468, p. 1045
  • Buckle, J.V., Hills, R.E., Smith, H., (2009) Mnras, 399, p. 1026
  • Carlhoff, P., Nguyen Luong, Q., Schilke, P., (2013) A&A, 560, p. A24
  • Cesaroni, R., Churchwell, E., Hofner, P., Walmsley, C.M., Kurtz, S., (1994) A&A, 288, p. 903
  • Currie, M.J., Berry, D.S., Jenness, T., (2014) Astronomical Data Analysis Software and Systems XXIII, 485, p. 391. , ed. N. Manset, & P. Forshay, ASP Conf. Ser
  • Dempsey, J.T., Thomas, H.S., Currie, M.J., (2013) ApJS, 209, p. 8
  • Kim, S.-J., Kim, H.-D., Lee, Y., (2006) ApJS, 162, p. 161
  • Kong, S., Lada, C.J., Lada, E.A., (2015) ApJ, 805, p. 58
  • Lada, C.J., Lada, E.A., Clemens, D.P., Bally, J., (1994) ApJ, 429, p. 694
  • Lin, S.-J., Shimajiri, Y., Hara, C., (2016) ApJ, 826, p. 193
  • Olmi, L., Cesaroni, R., Hofner, P., (2003) A&A, 407, p. 225
  • Padoan, P., Juvela, M., Bally, J., Nordlund, Å., (2000) ApJ, 529, p. 259
  • Paron, S., Ortega, M.E., Fariña, C., (2016) Mnras, 455, p. 518
  • Pillai, T., Kauffmann, J., Wyrowski, F., (2011) A&A, 530, p. A118
  • Rigby, A.J., Moore, T.J.T., Plume, R., (2016) Mnras, 456, p. 2885
  • Russeil, D., Pestalozzi, M., Mottram, J.C., (2011) A&A, 526, p. A151
  • Shimajiri, Y., Kitamura, Y., Saito, M., (2014) A&A, 564, p. A68
  • Townsley, L.K., Broos, P.S., Garmire, G.P., (2014) ApJS, 213, p. 1
  • Van Der-Tak, F.F.S., Black, J.H., Schöier, F.L., Jansen, D.J., Van Dishoeck, E.F., (2007) A&A, 468, p. 627
  • Watson, A.M., Hanson, M.M., (1997) ApJ, 490, p. L165
  • Wilson, T.L., Rood, R., (1994) ARA&A, 32, p. 191
  • Wood, D.O.S., Churchwell, E., (1989) ApJS, 69, p. 831

Citas:

---------- APA ----------
Paron, S., Areal, M.B. & Ortega, M.E. (2018) . Mapping the 13CO/C18O abundance ratio in the massive star-forming region G29.96-0.02. Astronomy and Astrophysics, 617.
http://dx.doi.org/10.1051/0004-6361/201833658
---------- CHICAGO ----------
Paron, S., Areal, M.B., Ortega, M.E. "Mapping the 13CO/C18O abundance ratio in the massive star-forming region G29.96-0.02" . Astronomy and Astrophysics 617 (2018).
http://dx.doi.org/10.1051/0004-6361/201833658
---------- MLA ----------
Paron, S., Areal, M.B., Ortega, M.E. "Mapping the 13CO/C18O abundance ratio in the massive star-forming region G29.96-0.02" . Astronomy and Astrophysics, vol. 617, 2018.
http://dx.doi.org/10.1051/0004-6361/201833658
---------- VANCOUVER ----------
Paron, S., Areal, M.B., Ortega, M.E. Mapping the 13CO/C18O abundance ratio in the massive star-forming region G29.96-0.02. Astron. Astrophys. 2018;617.
http://dx.doi.org/10.1051/0004-6361/201833658