Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Context. Interplanetary imagers provide 2D projected views of the densest plasma parts of interplanetary coronal mass ejections (ICMEs), while in situ measurements provide magnetic field and plasma parameter measurements along the spacecraft trajectory, that is, along a 1D cut. The data therefore only give a partial view of the 3D structures of ICMEs. Aims. By studying a large number of ICMEs, crossed at different distances from their apex, we develop statistical methods to obtain a quantitative generic 3D shape of ICMEs. Methods. In a first approach we theoretically obtained the expected statistical distribution of the shock-normal orientation from assuming simple models of 3D shock shapes, including distorted profiles, and compared their compatibility with observed distributions. In a second approach we used the shock normal and the flux rope axis orientations together with the impact parameter to provide statistical information across the spacecraft trajectory. Results. The study of different 3D shock models shows that the observations are compatible with a shock that is symmetric around the Sun-apex line as well as with an asymmetry up to an aspect ratio of around 3. Moreover, flat or dipped shock surfaces near their apex can only be rare cases. Next, the sheath thickness and the ICME velocity have no global trend along the ICME front. Finally, regrouping all these new results and those of our previous articles, we provide a quantitative ICME generic 3D shape, including the global shape of the shock, the sheath, and the flux rope. Conclusions. The obtained quantitative generic ICME shape will have implications for several aims. For example, it constrains the output of typical ICME numerical simulations. It is also a base for studying the transport of high-energy solar and cosmic particles during an ICME propagation as well as for modeling and forecasting space weather conditions near Earth. © ESO, 2016.

Registro:

Documento: Artículo
Título:Quantitative model for the generic 3D shape of ICMEs at 1 AU
Autor:Démoulin, P.; Janvier, M.; Masías-Meza, J.J.; Dasso, S.
Filiación:Observatoire de Paris, LESIA, UMR 8109 (CNRS), Meudon, 92195, France
Institut d'Astrophysique Spatiale, Univ. Paris-Sud-CNRS, Université Paris-Saclay, Bâtiment 121, Orsay Cedex, 91405, France
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Instituto de Astronomía y Física del Espacio, UBA-CONICET, CC. 67, Suc. 28, Buenos Aires, 1428, Argentina
Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Palabras clave:Solar-terrestrial relations; Sun: coronal mass ejections (CMEs); Sun: heliosphere; Sun: magnetic fields; Aspect ratio; Cosmology; Earth (planet); Magnetic fields; Magnetoplasma; Rope; Solar system; Spacecraft; Weather forecasting; Interplanetary coronal mass ejections; Modeling and forecasting; Solar-terrestrial relations; Spacecraft trajectories; Statistical distribution; Sun: coronal mass ejection; Sun: heliosphere; Sun: magnetic field; Interplanetary spacecraft
Año:2016
Volumen:595
DOI: http://dx.doi.org/10.1051/0004-6361/201628164
Título revista:Astronomy and Astrophysics
Título revista abreviado:Astron. Astrophys.
ISSN:00046361
CODEN:AAEJA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00046361_v595_n_p_Demoulin

Referencias:

  • Abreu, P., Aglietta, M., (2011) J. Instrument, 6, p. 1003. , Pierre Auger Collaboration
  • Asorey, H., Dasso, S., (2016) Proc. of Science, , The LAGO Collaboration in press
  • Bothmer, V., Schwenn, R., (1998) Annales Geophysicae, 16, p. 1
  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R., (1981) J. Geophys. Res, 86, p. 6673
  • Burlaga, L.F., Lepping, R.P., Jones, J.A., (1990) Physics of Magnetic Flux Ropes, 373. , Washington DC: American Geophysical Union
  • Cabello, I., Cremades, H., Balmaceda, L., Dohmen, I., (2016) Sol. Phys, 291, p. 1799
  • Cane, H.V., Richardson, I.G., Cyr, O.C.S., (2000) Geophys. Res. Lett, 27, p. 3591
  • Cremades, H., Bothmer, V., (2005) Coronal and Stellar Mass Ejections, 226, p. 48. , eds. K. Dere, J. Wang, & Y. Yan, IAU Symp
  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L., Gulisano, A.M., (2005) Adv. Spa. Res, 35, p. 711
  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L., (2006) A&A, 455, p. 349
  • Dasso, S., Nakwacki, M.S., Démoulin, P., Mandrini, C.H., (2007) Sol. Phys, 244, p. 115
  • Dasso, S., Mandrini, C.H., Schmieder, B., (2009) J. Geophys. Res, 114, p. A02109
  • Dasso, S., Asorey, H., (2012) Adv. Spa. Res, 49, p. 1563. , Pierre Auger Collaboration
  • Démoulin, P., (2009) Sol. Phys, 257, p. 169
  • Démoulin, P., (2010) Twelfth Int. Solar Wind Conf, 1216, p. 329
  • Démoulin, P., (2014) IAU Symp, 300, p. 245. , eds. B. Schmieder, J.-M. Malherbe, & S. T. Wu
  • Démoulin, P., Nakwacki, M.S., Dasso, S., Mandrini, C.H., (2008) Sol. Phys, 250, p. 347
  • Démoulin, P., Dasso, S., Janvier, M., (2013) A&A, 550, p. A3
  • Démoulin, P., Janvier, M., Dasso, S., (2016) Sol. Phys, 291, p. 531
  • Elliott, H.A., McComas, D.J., Schwadron, N.A., (2005) J. Geophys. Res, 110, p. A04103
  • Farrugia, C.J., Berdichevsky, D.B., Möstl, C., (2011) J. Atmos. Sol. Terr. Phys, 73, p. 1254
  • Feng, H.Q., Wu, D.J., Chao, J.K., Lee, L.C., Lyu, L.H., (2010) J. Geophys. Res, 115, p. A04107
  • Forbes, T.G., Linker, J.A., Chen, J., (2006) Space Sci. Rev, 123, p. 251
  • Gosling, J.T., Baker, D.N., Bame, S.J., Feldman, W.C., Zwickl, R.D., (1987) J. Geophys. Res, (92), p. 8519
  • Gosling, J.T., McComas, D.J., (1987) Geophys. Res. Lett, 14, p. 355
  • Hu, Q., Qiu, J., Krucker, S., (2015) J. Geophys. Res, 120, p. 5266
  • Jacobs, C., Van Der Holst, B., Poedts, S., (2007) A&A, 470, p. 359
  • Janvier, M., Démoulin, P., Dasso, S., (2013) A&A, 556, p. A50
  • Janvier, M., Démoulin, P., Dasso, S., (2014) J. Geophys. Res, 119, p. 7088
  • Janvier, M., Démoulin, P., Dasso, S., (2014) A&A, 565, p. A99
  • Janvier, M., Aulanier, G., Démoulin, P., (2015) Sol. Phys, 290, p. 3425
  • Janvier, M., Dasso, S., Démoulin, P., Masías-Meza, J.J., Lugaz, N., (2015) J. Geophys. Res, 120, p. 3328
  • Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M., (2006) Sol. Phys, 239, p. 337
  • Kahler, S.W., Krucker, S., Szabo, A., (2011) J. Geophys. Res, 116, p. A01104
  • Lai, H.R., Russell, C.T., Jian, L.K., (2012) Sol. Phys, 278, p. 421
  • Lario, D., Haggerty, D.K., Roelof, E.C., (2001) Space Sci. Rev, 97, p. 277
  • Lepping, R.P., Wu, C.C., (2010) Annales Geophysicae, 28, p. 1539
  • Lepri, S.T., Zurbuchen, T.H., (2004) J. Geophys. Res, 109, p. 1112
  • Lepri, S.T., Zurbuchen, T.H., Fisk, L.A., (2001) J. Geophys. Res, 106, p. 29231
  • Liu, Y.D., Yang, Z., Wang, R., (2014) ApJ, 793, p. L41
  • Lugaz, N., Farrugia, C.J., (2014) Geophys. Res. Lett, 41, p. 769
  • Lugaz, N., Roussev, I., (2011) J. Atmos. Sol. Terr. Phys, 73, p. 1187
  • Lugaz, N., Manchester Ivw, B., Roussev, I.I., Toth, G., Gombosi, T.I., (2007) ApJ, 659, p. 788
  • Manchester, W.B., Gombosi, T.I., Roussev, I., (2004) J. Geophys. Res, 109, p. 1102
  • Manchester, W.B.I., Gombosi, T.I., Roussev, I., (2004) J. Geophys. Res, 109, p. A02107
  • Mandrini, C.H., Nakwacki, M., Attrill, G., (2007) Sol. Phys, 244, p. 25
  • Marsden, R.G., Sanderson, T.R., Tranquille, C., Wenzel, K.-P., Smith, E.J., (1987) J. Geophys. Res, 92, p. 11009
  • Marubashi, K., Lepping, R.P., (2007) Annales Geophysicae, 25, p. 2453
  • Masías-Meza, J.J., Dasso, S., Démoulin, P., Rodriguez, L., Janvier, M., (2016) A&A, 592, p. A118
  • Masson, S., Démoulin, P., Dasso, S., Klein, K.-L., (2012) A&A, 538, p. A32
  • Mitsakou, E., Moussas, X., (2014) Sol. Phys, 289, p. 3137
  • Möstl, C., Davies, J.A., (2013) Sol. Phys, 285, p. 411
  • Möstl, C., Farrugia, C.J., Temmer, M., (2009) ApJ, 705, p. L180
  • Möstl, C., Rollett, T., Frahm, R.A., (2015) Nat. Com, 6, p. 7135
  • Mulligan, T., Blake, J.B., Shaul, D., (2009) J. Geophys. Res, 114, p. 7105
  • Oh, S.Y., Yi, Y., Nah, J.-K., Cho, K.-S., (2002) J. Kor. Astron. Soc, 35, p. 151
  • Oh, S.Y., Yi, Y., Kim, Y.H., (2007) Sol. Phys, 245, p. 391
  • Richardson, J.D., (2011) J. Atmos. Sol. Terr. Phys, 73, p. 1385
  • Richardson, I.G., Cane, H.V., (1995) J. Geophys. Res, 100, p. 23397
  • Richardson, I.G., Cane, H.V., (2010) Sol. Phys, 264, p. 189
  • Riley, P., Linker, J.A., Mikíc, Z., (2003) J. Geophys. Res, 108, p. 1272
  • Robbrecht, E., Berghmans, D., Van Der Linden, R.A.M., (2009) ApJ, 691, p. 1222
  • Rouillard, A.P., (2011) J. Atmos. Sol. Terr. Phys, 73, p. 1201
  • Ruénach, A., Lavraud, B., Owens, M.J., (2012) J. Geophys. Res, 117, p. A09101
  • Ruénach, A., Lavraud, B., Farrugia, C.J., (2015) J. Geophys. Res, 120, p. 43
  • Savani, N.P., Owens, M.J., Rouillard, A.P., Forsyth, R.J., Davies, J.A., (2010) ApJ, 714, p. L128
  • Schmieder, B., Aulanier, G., Vršnak, B., (2015) Sol. Phys, 290, p. 3457
  • Shen, F., Shen, C., Zhang, J., (2014) J. Geophys. Res, 119, p. 7128
  • Simpson, J.A., (1954) Phys. Rev, 94, p. 426
  • Simpson, J.A., (2000) Space Sci. Rev, 93, p. 11
  • Siscoe, G., Odstrcil, D., (2008) J. Geophys. Res, 113, p. A00B07
  • Taubenschuss, U., Erkaev, N.V., Biernat, H.K., (2010) Annales Geophysicae, 28, p. 1075
  • Vršnak, B., Žic, T., Vrbanec, D., (2013) Sol. Phys, 285, p. 295
  • Wang, Y.M., Wang, S., Ye, P.Z., (2002) Sol. Phys, 211, p. 333
  • Wang, C., Li, H., Richardson, J.D., Kan, J.R., (2010) J. Geophys. Res, 115, p. A09215
  • Wang, Y., Chen, C., Gui, B., (2011) J. Geophys. Res, 116, p. 4104
  • Xiong, M., Zheng, H., Wang, Y., Wang, S., (2006) J. Geophys. Res, 111, p. A08105
  • Yashiro, S., Gopalswamy, N., Michalek, G., (2004) J. Geophys. Res, 109, p. 7105
  • Zhou, Y., Feng, X., Zhao, X., (2014) J. Geophys. Res, 119, p. 9321
  • Zurbuchen, T.H., Richardson, I.G., (2006) Space Sci. Rev, 123, p. 31

Citas:

---------- APA ----------
Démoulin, P., Janvier, M., Masías-Meza, J.J. & Dasso, S. (2016) . Quantitative model for the generic 3D shape of ICMEs at 1 AU. Astronomy and Astrophysics, 595.
http://dx.doi.org/10.1051/0004-6361/201628164
---------- CHICAGO ----------
Démoulin, P., Janvier, M., Masías-Meza, J.J., Dasso, S. "Quantitative model for the generic 3D shape of ICMEs at 1 AU" . Astronomy and Astrophysics 595 (2016).
http://dx.doi.org/10.1051/0004-6361/201628164
---------- MLA ----------
Démoulin, P., Janvier, M., Masías-Meza, J.J., Dasso, S. "Quantitative model for the generic 3D shape of ICMEs at 1 AU" . Astronomy and Astrophysics, vol. 595, 2016.
http://dx.doi.org/10.1051/0004-6361/201628164
---------- VANCOUVER ----------
Démoulin, P., Janvier, M., Masías-Meza, J.J., Dasso, S. Quantitative model for the generic 3D shape of ICMEs at 1 AU. Astron. Astrophys. 2016;595.
http://dx.doi.org/10.1051/0004-6361/201628164