Artículo

Luna, G.J.M.; Raymond, J.C.; Brickhouse, N.S.; Mauche, C.W.; Suleimanov, V. "Testing the cooling flow model in the intermediate polar EX Hydrae" (2015) Astronomy and Astrophysics. 578
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We use the best available X-ray data from the intermediate polar EX Hydrae to study the cooling-flow model often applied to interpret the X-ray spectra of these accreting magnetic white dwarf binaries. First, we resolve a long-standing discrepancy between the X-ray and optical determinations of the mass of the white dwarf in EX Hya by applying new models of the inner disk truncation radius. Our fits to the X-ray spectrum now agree with the white dwarf mass of 0.79 MâŠ(tm) determined using dynamical methods through spectroscopic observations of the secondary. We use a simple isobaric cooling flow model to derive the emission line fluxes, emission measure distribution, and H-like to He-like line ratios for comparison with the 496 ks Chandra High Energy Transmission Grating observation of EX Hydrae. We find that the H/He ratios are not well reproduced by this simple isobaric cooling flow model and show that while H-like line fluxes can be accurately predicted, fluxes of lower-Z He-like lines are significantly underestimated. This discrepancy suggests that an extra heating mechanism plays an important role at the base of the accretion column, where cooler ions form. We thus explored more complex cooling models, including the change of gravitational potential with height in the accretion column and a magnetic dipole geometry. None of these modifications to the standard cooling flow model are able to reproduce the observed line ratios. While a cooling flow model with subsolar (0.1 âŠ(tm)) abundances is able to reproduce the line ratios by reducing the cooling rate at temperatures lower than ~107.3 K, the predicted line-to-continuum ratios are much lower than observed. We discuss and discard mechanisms, such as photoionization, departures from constant pressure, resonant scattering, different electron-ion temperatures, and Compton cooling. Thermal conduction transfers energy from the region above 107 K, where the H-like lines are mostly formed, to the cooler regions where the He-like ions of the lower-Z elements are formed, hence in principle it could help resolve the problem. However, simple models indicate that the energy is deposited below 106 K, which is too cool to increase the emission of the He-like lines we observe. We conclude that some other effect, such as thermally unstable cooling, modifies the temperature distribution. © 2015 ESO.

Registro:

Documento: Artículo
Título:Testing the cooling flow model in the intermediate polar EX Hydrae
Autor:Luna, G.J.M.; Raymond, J.C.; Brickhouse, N.S.; Mauche, C.W.; Suleimanov, V.
Filiación:Instituto de Astronomiá y Física Del Espacio (IAFE, CONICET-UBA, CC 67, Caba, C1428ZAA, Argentina
Harvard-Smithsonian Center for Astrophysics, 60 Garden st., Cambridge, MA 02138, United States
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, United States
Institute for Astronomy and Astrophysics, Kepler Center for Astro and Particle Physics, Eberhard Karls University, Sand 1, Tübingen, 72076, Germany
Kazan (Volga Region), Federal University, Kremlevskaya 18, Kazan, 420008, Russian Federation
Palabras clave:Novae, cataclysmic variables; Radiation mechanisms: general; X-rays: individuals: EX Hydrae; Cooling; Cooling systems; Ions; X ray analysis; X ray spectrographs; Extra-heating mechanism; Gravitational potential; Magnetic white dwarfs; Novae , cataclysmic variables; Optical determination; Radiation mechanisms: general; Resonant scattering; X-rays: individual; White dwarfs
Año:2015
Volumen:578
DOI: http://dx.doi.org/10.1051/0004-6361/201525755
Título revista:Astronomy and Astrophysics
Título revista abreviado:Astron. Astrophys.
ISSN:00046361
CODEN:AAEJA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00046361_v578_n_p_Luna

Referencias:

  • Aizu, K., (1973) Prog. Theor. Phys., 49, p. 1184
  • Anders, E., Grevesse, N., (1989) Geochim. Cosmochim. Acta, 53, p. 197
  • Bell, A.R., (2004) MNRAS, 353, p. 550
  • Bertschinger, E., Meiksin, A., (1986) ApJ, 306, p. 1
  • Beuermann, K., Reinsch, K., (2008) A&A, 480, p. 199
  • Beuermann, K., Harrison, T.E., McArthur, B.E., Benedict, G.F., Gänsicke, B.T., (2003) A&A, 412, p. 821
  • Binney, J., Cowie, L.L., (1981) ApJ, 247, p. 464
  • Brunschweiger, J., Greiner, J., Ajello, M., Osborne, J., (2009) A&A, 496, p. 121
  • Canalle, J.B.G., Saxton, C.J., Wu, K., Cropper, M., Ramsay, G., (2005) A&A, 440, p. 185
  • Cropper, M., Wu, K., Ramsay, G., Kocabiyik, A., (1999) MNRAS, 306, p. 684
  • Eisenbart, S., Beuermann, K., Reinsch, K., Gänsicke, B.T., (2002) A&A, 382, p. 984
  • Fabian, A.C., Nulsen, P.E.J., (1977) MNRAS, 180, p. 479
  • Foster, A.R., Ji, L., Smith, R.K., Brickhouse, N.S., (2012) ApJ, 756, p. 128
  • Fujimoto, R., Ishida, M., (1997) ApJ, 474, p. 774
  • Ghavamian, P., Schwartz, S.J., Mitchell, J., Masters, A., Laming, J.M., (2013) Space Sci. Rev., 178, p. 633
  • Hayashi, T., Ishida, M., (2014) MNRAS, 438, p. 2267
  • Hayashi, T., Ishida, M., (2014) MNRAS, 441, p. 3718
  • Homer, L., Szkody, P., Raymond, J.C., (2004) ApJ, 610, p. 991
  • Hoogerwerf, R., Brickhouse, N.S., Mauche, C.W., (2004) ApJ, 610, p. 411
  • Hoogerwerf, R., Brickhouse, N.S., Mauche, C.W., (2006) ApJ, 643, p. 45
  • Hurwitz, M., Sirk, M., Bowyer, S., Ko, Y.-K., (1997) ApJ, 477, p. 390
  • Imamura, J.N., Chevalier, R.A., (1984) ApJ, 280, p. 313
  • Imamura, J.N., Durisen, R.H., (1983) ApJ, 268, p. 291
  • Innes, D.E., (1992) A&A, 256, p. 660
  • Ishida, M., Silber, A., Bradt, H.V., (1991) ApJ, 367, p. 270
  • Kashyap, V., Drake, J., Cool stars, stellar systems, and the sun (1998) ASP Conf. Ser., 154, p. 844. , eds. R. A. Donahue, & J. A. Bookbinder
  • Kashyap, V., Drake, J.J., (2000) BASI, 28, p. 475
  • Kim, W.-T., Narayan, R., (2003) ApJ, 596, p. 889
  • Langer, S.H., Chanmugam, C., Shaviv, G., (1982) ApJ, 258, p. 289
  • Liu, F.K., Meyer, F., Meyer-Hofmeister, E., Burwitz, V., (2008) A&A, 483, p. 231
  • Lodders, K., Palme, H., Gail, H.-P., (2009) Landolt Börnstein, p. 44
  • Luna, G.J.M., Sokoloski, J.L., (2007) ApJ, 671, p. 741
  • Luna, G.J.M., Raymond, J.C., Brickhouse, N.S., (2010) ApJ, 711, p. 1333
  • Mauche, C.W., (1999) ApJ, 520, p. 822
  • Mauche, C.W., Liedahl, D.A., Fournier, K.B., (2001) ApJ, 560, p. 992
  • Mauche, C.W., Liedahl, D.A., Fournier, K.B., (2003) ApJ, 588, p. 101
  • Mukai, K., Kinkhabwala, A., Peterson, J.R., Kahn, S.M., Paerels, F., (2003) ApJ, 586, p. 77
  • Narayan, R., Medvedev, M.V., (2001) ApJ, 562, p. 129
  • Patterson, J., Raymond, J.C., (1985) ApJ, 292, p. 535
  • Perna, R., McDowell, J., Menou, K., Raymond, J., Medvedev, M.V., (2003) ApJ, 598, p. 545
  • Peterson, J.R., Fabian, A.C., (2006) Phys. Rep., 427, p. 1
  • Ramsay, G., Wheatley, P.J., Norton, A.J., Hakala, P., Baskill, D., (2008) MNRAS, 387, p. 1157
  • Raymond, J.C., (1979) ApJS, 39, p. 1
  • Revnivtsev, M., Potter, S., Kniazev, A., (2011) MNRAS, 411, p. 1317
  • Rosen, S.R., Mason, K.O., Cordova, F.A., (1988) MNRAS, 231, p. 549
  • Ruszkowski, M., Oh, S.P., (2011) MNRAS, 414, p. 1493
  • Semena, A.N., Revnivtsev, M.G., Buckley, D.A.H., (2014) MNRAS, 442, p. 1123
  • Smith, R.K., Brickhouse, N.S., Liedahl, D.A., Raymond, J.C., (2001) ApJ, 556, p. 91
  • Suleimanov, V., Revnivtsev, M., Ritter, H., (2005) A&A, 443, p. 291
  • Suleimanov, V., Poutanen, J., Falanga, M., Werner, K., (2008) A&A, 491, p. 525
  • Tucker, W.H., Rosner, R., (1983) ApJ, 267, p. 547
  • Van De Putte, D., Smith, R.C., Hawkins, N.A., Martin, J.S., (2003) MNRAS, 342, p. 151
  • Vink, J., Laming, J.M., (2003) ApJ, 584, p. 758
  • Yuasa, T., Nakazawa, K., Makishima, K., (2010) A&A, 520, p. 25
  • Zhuravleva, I., Churazov, E., Schekochihin, A.A., (2014) Nature, 515, p. 85

Citas:

---------- APA ----------
Luna, G.J.M., Raymond, J.C., Brickhouse, N.S., Mauche, C.W. & Suleimanov, V. (2015) . Testing the cooling flow model in the intermediate polar EX Hydrae. Astronomy and Astrophysics, 578.
http://dx.doi.org/10.1051/0004-6361/201525755
---------- CHICAGO ----------
Luna, G.J.M., Raymond, J.C., Brickhouse, N.S., Mauche, C.W., Suleimanov, V. "Testing the cooling flow model in the intermediate polar EX Hydrae" . Astronomy and Astrophysics 578 (2015).
http://dx.doi.org/10.1051/0004-6361/201525755
---------- MLA ----------
Luna, G.J.M., Raymond, J.C., Brickhouse, N.S., Mauche, C.W., Suleimanov, V. "Testing the cooling flow model in the intermediate polar EX Hydrae" . Astronomy and Astrophysics, vol. 578, 2015.
http://dx.doi.org/10.1051/0004-6361/201525755
---------- VANCOUVER ----------
Luna, G.J.M., Raymond, J.C., Brickhouse, N.S., Mauche, C.W., Suleimanov, V. Testing the cooling flow model in the intermediate polar EX Hydrae. Astron. Astrophys. 2015;578.
http://dx.doi.org/10.1051/0004-6361/201525755