Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Context. Coronal mass ejections (CMEs) are routinely tracked with imagers in the interplanetary space, while magnetic clouds (MCs) properties are measured locally by spacecraft. However, both imager and in situ data do not provide any direct estimation of the general flux rope properties. Aims. The main aim of this study is to constrain the global shape of the flux rope axis from local measurements and to compare the results from in-situ data with imager observations. Methods. We performed a statistical analysis of the set of MCs observed by WIND spacecraft over 15 years in the vicinity of Earth. We analyzed the correlation between different MC parameters and studied the statistical distributions of the angles defining the local axis orientation. With the hypothesis of having a sample of MCs with a uniform distribution of spacecraft crossing along their axis, we show that a mean axis shape can be derived from the distribution of the axis orientation. As a complement, while heliospheric imagers do not typically observe MCs but only their sheath region, we analyze one event where the flux rope axis can be estimated from the STEREO imagers. Results. From the analysis of a set of theoretical models, we show that the distribution of the local axis orientation is strongly affected by the overall axis shape. Next, we derive the mean axis shape from the integration of the observed orientation distribution. This shape is robust because it is mostly determined from the overall shape of the distribution. Moreover, we find no dependence on the flux rope inclination on the ecliptic. Finally, the derived shape is fully consistent with the one derived from heliospheric imager observations of the June 2008 event. Conclusions. We have derived a mean shape of MC axis that only depends on one free parameter, the angular separation of the legs (as viewed from the Sun). This mean shape can be used in various contexts, such as studies of high-energy particles or space weather forecasts. © ESO, 2013.

Registro:

Documento: Artículo
Título:Global axis shape of magnetic clouds deduced from the distribution of their local axis orientation
Autor:Janvier, M.; Démoulin, P.; Dasso, S.
Filiación:Observatoire de Paris, LESIA, UMR 8109 (CNRS), 92195 Meudon Principal cedex, France
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Instituto de Astronomía y Física Del Espacio, UBA-CONICET, CC. 67, Suc. 28, 1428 Buenos Aires, Argentina
Palabras clave:Magnetic fields; Solar-terrestrial relations; Sun: coronal mass ejections (CMEs); Sun: heliosphere; Coronal mass ejection; High-energy particles; Orientation distributions; Solar-terrestrial relations; Space weather forecast; Statistical distribution; Sun: coronal mass ejection; Sun: heliosphere; Magnetic fields; Rope; Solar system; Weather forecasting; Interplanetary spacecraft
Año:2013
Volumen:556
DOI: http://dx.doi.org/10.1051/0004-6361/201321442
Título revista:Astronomy and Astrophysics
Título revista abreviado:Astron. Astrophys.
ISSN:00046361
CODEN:AAEJA
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00046361_v556_n_p_Janvier.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00046361_v556_n_p_Janvier

Referencias:

  • Al-Haddad, N., Roussev, I.I., Möstl, C., (2011) ApJ, 738, pp. L18
  • Aulanier, G., Janvier, M., Schmieder, B., (2012) A&A, 543, pp. A110
  • Burlaga, L.F., (1995) Interplanetary Magnetohydrodynamics, , (New York: Oxford University Press)
  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R., (1981) J. Geophys. Res, 86, p. 6673
  • Burlaga, L.F., Lepping, R.P., Jones, J.A., (1990) Washington DC American Geophysical Union Geophysical Monograph Series, 58, p. 373
  • Canou, A., Amari, T., Bommier, V., (2009) ApJ, 693, pp. L27
  • Cheng, X., Zhang, J., Liu, Y., Ding, M.D., (2011) ApJ, 732, pp. L25
  • Cheng, X., Zhang, J., Ding, M.D., Liu, Y., Poomvises, W., (2013) ApJ, 763, p. 43
  • Cremades, H., Bothmer, V., (2004) A&A, 422, p. 307
  • Dasso, S., (2009) IAU Symp, 257, p. 379. , eds. N. Gopalswamy, & D. F. Webb
  • Dasso, S., Mandrini, C.H., Démoulin, P., Farrugia, C.J., (2003) J. Geophys. Res, 108, p. 1362
  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L., (2006) A&A, 455, p. 349
  • Démoulin, P., Dasso, S., (2009) A&A, 507, p. 969
  • Démoulin, P., Dasso, S., Janvier, M., (2013) A&A, 550, pp. A3
  • Farrugia, C.J., Berdichevsky, D.B., Möstl, C., (2011) J. Atmos. Sol. Terr. Phys, 73, p. 1254
  • Forbes, T.G., Linker, J.A., Chen, J., (2006) Space Sci. Rev, 123, p. 251
  • Goldstein, H., (1983) Solar Wind Five, p. 731. , NASA CP-2280, ed. M. Neugebauer
  • Guo, Y., Schmieder, B., Démoulin, P., (2010) ApJ, 714, p. 343
  • Hidalgo, M.A., (2011) J. Geophys. Res, 116, p. 2101
  • Howard, T.A., (2011) J. Atmos. Sol. Terr. Phys, 73, p. 1242
  • Howard, T.A., Deforest, C.E., (2012) ApJ, 746, p. 64
  • Hu, Q., Sonnerup, B.U.Ö., (2002) J. Geophys. Res, 107, p. 1142
  • Isavnin, A., Kilpua, E.K.J., Koskinen, H.E.J., (2011) Sol. Phys, 273, p. 205
  • Kilpua, E.K.J., Jian, L.K., Li, Y., Luhmann, J.G., Russell, C.T., (2011) J. Atmos. Sol. Terr. Phys, 73, p. 1228
  • Kleimann, J., (2012) Sol. Phys, 281, p. 353
  • Krall, J., (2007) ApJ, 657, p. 559
  • Larson, D.E., Lin, R.P., McTiernan, J.M., (1997) Geophys. Res. Lett, 24, p. 1911
  • Leitner, M., Farrugia, C.J., Möstl, C., (2007) J. Geophys. Res, 112, pp. A06113
  • Lepping, R.P., Wu, C.C., (2010) Ann. Geophys, 28, p. 1539
  • Lepping, R.P., Burlaga, L.F., Jones, J.A., (1990) J. Geophys. Res, 95, p. 11957
  • Lepping, R.P., Wu, C.-C., Berdichevsky, D.B., (2005) Ann. Geophys, 23, p. 2687
  • Lugaz, N., Roussev, I., (2011) J. Atmos. Sol. Terr. Phys, 73, p. 1187
  • Lundquist, S., (1950) Ark. Fys, 2, p. 361
  • Marubashi, K., Coronal mass ejections (1997) Geophysical Monograph, 99, p. 147
  • Marubashi, K., Lepping, R.P., (2007) Ann. Geophys, 25, p. 2453
  • Marubashi, K., Cho, K.-S., Kim, Y.-H., Park, Y.-D., Park, S.-H., (2012) J. Geophys. Res, 117, p. 1101
  • Masson, S., Démoulin, P., Dasso, S., Klein, K.-L., (2012) A&A, 538, pp. A32
  • Möstl, C., Farrugia, C.J., Temmer, M., (2009) ApJ, 705, pp. L180
  • Mulligan, T., Russell, C.T., (2001) J. Geophys. Res, 106, p. 10581
  • Mulligan, T., Russell, C.T., Anderson, B.J., Solar wind nine (1999) AIP Conf. Proc, 471, p. 689. , eds. S. R. Habbal, R. Esser, J. V. Hollweg, P. A. Isenberg
  • Nakagawa, T., Matsuoka, A., (2010) J. Geophys. Res., (Space Physics), 115, p. 10113
  • Nakwacki, M., Dasso, S., Démoulin, P., Mandrini, C.H., Gulisano, A.M., (2011) A&A, 535, pp. A52
  • Owens, M.J., Démoulin, P., Savani, N.P., Lavraud, B., Ruenach, A., (2012) Sol. Phys, 278, p. 435
  • Patsourakos, S., Vourlidas, A., Stenborg, G., (2013) ApJ, 764, p. 125
  • Pick, M., Forbes, T.G., Mann, G., (2006) Space Sci. Rev, 123, p. 341
  • Reisenfeld, D.B., Gosling, J.T., Forsyth, R.J., Riley, P., St. Cyr, O.C., (2003) Geophys. Res. Lett, 30, p. 8031
  • Robbrecht, E., Patsourakos, S., Vourlidas, A., (2009) ApJ, 701, p. 283
  • Romashets, E., Vandas, M., (2009) A&A, 499, p. 17
  • Romashets, E.P., Vandas, M., (2003) Geophys. Res. Lett, 30, p. 2065
  • Rouillard, A.P., (2011) J. Atmos. Sol. Terr. Phys, 73, p. 1201
  • Ruenach, A., Lavraud, B., Owens, M.J., (2012) J. Geophys. Res, 117, pp. A09101
  • Schmieder, B., Demoulin, P., Aulanier, G., (2013) Adv. Space Res, 51, p. 1967
  • Siscoe, G., Odstrcil, D., (2008) J. Geophys. Res, 113, pp. A00B07
  • Sonnerup, B.U.Ö., Hasegawa, H., Teh, W.-L., Hau, L.-N., (2006) J. Geophys. Res, 111, p. 9204
  • Thernisien, A., (2011) ApJS, 194, p. 33
  • Thernisien, A.F.R., Howard, R.A., Vourlidas, A., (2006) ApJ, 652, p. 763
  • Thernisien, A., Vourlidas, A., Howard, R.A., (2011) J. Atmosph. Sol.-Terrest. Phys, 73, p. 1156
  • Vandas, M., Romashets, E.P., (2003) A&A, 398, p. 801
  • Vandas, M., Odstrčil, D., Watari, S., (2002) J. Geophys. Res, 107, p. 1236
  • Wimmer-Schweingruber, R.F., Crooker, N.U., Balogh, A., (2006) Space Sci. Rev, 123, p. 177
  • Wood, B.E., Howard, R.A., Thernisien, A., Plunkett, S.P., Socker, D.G., (2009) Sol. Phys, 259, p. 163
  • Wood, B.E., Wu, C.-C., Howard, R.A., Socker, D.G., Rouillard, A.P., (2011) ApJ, 729, p. 70
  • Xie, H., Gopalswamy, N., St. Cyr, O.C., (2013) Sol. Phys, 284, p. 47

Citas:

---------- APA ----------
Janvier, M., Démoulin, P. & Dasso, S. (2013) . Global axis shape of magnetic clouds deduced from the distribution of their local axis orientation. Astronomy and Astrophysics, 556.
http://dx.doi.org/10.1051/0004-6361/201321442
---------- CHICAGO ----------
Janvier, M., Démoulin, P., Dasso, S. "Global axis shape of magnetic clouds deduced from the distribution of their local axis orientation" . Astronomy and Astrophysics 556 (2013).
http://dx.doi.org/10.1051/0004-6361/201321442
---------- MLA ----------
Janvier, M., Démoulin, P., Dasso, S. "Global axis shape of magnetic clouds deduced from the distribution of their local axis orientation" . Astronomy and Astrophysics, vol. 556, 2013.
http://dx.doi.org/10.1051/0004-6361/201321442
---------- VANCOUVER ----------
Janvier, M., Démoulin, P., Dasso, S. Global axis shape of magnetic clouds deduced from the distribution of their local axis orientation. Astron. Astrophys. 2013;556.
http://dx.doi.org/10.1051/0004-6361/201321442