Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Context. Multiple populations have been detected in several globular clusters (GC) that do not display a spread in metallicity. Unusual features of their observed colour.magnitude diagrams (CMD) can be interpreted in terms of differences in the helium content of the stars belonging to the sub-populations. Aims. Even if evidence gathered so far is compelling, differences in He abundance have never been directly observed. We attempt to measure these differences in two giant stars of NGC 2808 with very similar astrophysical parameters but different Na and O abundances, hence that presumably belong to different sub-populations, by directly comparing their He I 10 830 A lines. Methods. The He 10 830 A line forms in the upper chromosphere. Our detailed models derive the chromospheric structure using the Ca II and H¿ chromospheric lines, and simulate the corresponding He I 10 830 line profiles as a function of the helium abundance. We show that, at a given value of He abundance, the He I 10 830 equivalent width cannot significantly change without a corresponding much larger change in the Ca II chromospheric lines. We have used the VLT-CRIRES to obtain high-resolution spectra in the 10 830 A region, and the VLT-UVES to obtain spectra of the Ca II and H¿ lines of our target stars. Results. The two target stars have very similar Ca II and H chromospheric lines, but different appearances in the He region. One line, blueshifted by 17 km s.1 with respect to the He 10 830 rest wavelength, is detected in the spectrum of the Na-rich star, whereas the Na-poor star spectrum is consistent with a non-detection. From a detailed chromospheric modeling, we show that the difference in the spectra is consistent and most closely explained by an He abundance difference between the two stars of δY . 0.17. Our optical observations bracket the infrared ones over a range of about 50 days and we do not observe any substantial variability in the Ca II and H¿ lines. Conclusions. We provide direct evidence of a significant He line strength difference in giant stars of NGC 2808 belonging to different sub-populations, which had been previously detected by other photometric and spectroscopic means. The use of appropriate model chromospheres allows us for the first time to provide an approximate quantitative estimate of this difference, which is clearly consistent with the expected difference in abundance required by the stellar evolution theory to account for the observed peculiarities of this cluster's cmD. © 2011 ESO.

Registro:

Documento: Artículo
Título:Measuring helium abundance difference in giants of NGC 2808
Autor:Pasquini, L.; Mauas, P.; Käufl, H.U.; Cacciari, C.
Filiación:ESO, European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany
IAFE, CONICET-UBA, Ciudad Universitaria, Buenos Aires, Argentina
Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy
Palabras clave:globular clusters: general; globular clusters: individual: NGC2808; stars: abundances; Appropriate models; Astrophysical parameters; Blue-shifted; Chromospheric lines; Detailed models; Equivalent width; Giant stars; Globular clusters; Globular clusters: general; globular clusters: individual: NGC2808; Helium abundance; High-resolution spectra; Line profiles; Line strength; Metallicities; Non-detection; Optical observations; Quantitative estimates; stars: abundances; Stellar evolutions; Sub-populations; Target star; Astrophysics; Calcium; Chromophores; Helium; Sodium; Stars; Iodine
Año:2011
Volumen:531
DOI: http://dx.doi.org/10.1051/0004-6361/201116592
Título revista:Astronomy and Astrophysics
Título revista abreviado:Astron. Astrophys.
ISSN:00046361
CODEN:AAEJA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00046361_v531_n_p_Pasquini

Referencias:

  • Andretta, V., Mauas, P., Falchi, A., Teriaca, L., (2008) ApJ, 681, p. 650
  • Avrett, E.H., Loeser, R., (1984) Methods in Radiative Transfer, p. 341. , ed. W. Kalkofen (Cambridge Univ. Press)
  • Bohm-Vitense, E., (1979) ApJ, 234, p. 521
  • Bonifacio, P., Pasquini, L., Spite, F., (2002) A&A, 390, p. 91
  • Bragaglia, A., Carretta, E., Gratton, R.G., (2010) A&A, 519, pp. A60
  • Breckinridge, J.B., Hall, D., (1973) Sol. Phys., 28, p. 15
  • Cacciari, C., Bragaglia, A., Rossetti, E., (2004) A&A, 413, p. 343
  • Carretta, E., Bragaglia, A., Cacciari, C., (2004) ApJ, 610, pp. L25
  • Carretta, E., Bragaglia, A., Gratton, R.G., (2010) ApJ, 721, pp. L21
  • Cayrel, R., Calibration of fundamental stellar quantities (1985) Dordrecht, p. 137
  • Cincunegui, C., Mauas, P.J.D., (2001) ApJ, 552, p. 877
  • Danks, T., Lambert, D., (1985) A&A, 148, p. 293
  • Antona F, D.'., Caloi, V., (2008) MNRAS, 390, p. 693
  • Decressin, T., Charbonnel, C., Meynet, G., Prantzos, N., Ekström, S., (2007) A&A, 464, p. 102
  • Dekker, H., D'Odorico, S., D'Odorico, S., (2000) Proc. SPIE, 4008, p. 534
  • Dupree, A., Sasselov, D.D., Lester, J.B., (1992) ApJ, 387, pp. L85
  • Dupree, A.K., Smith, G.H., Straeder, J., (2009) AJ, 138, p. 1485
  • Dupree, A.K., Straeder, J., Smith, G.H., (2011) ApJ, 728, p. 155
  • Falchi, A., Mauas, P.J., (1998) A&A, 336, p. 281
  • Gratton, R.G., Bonifacio, P., Bragaglia, A., (2001) A&A, 369, p. 87
  • Gratton, R.G., Carretta, E., Bragaglia, A., (2010) A&A, 517, pp. A81
  • Gray, D.F., (2008) The Observation and Analysis of Stellar Photospheres, , Cambridge: Cambridge University Press
  • Jung, Y., Bristow, P., (2008) Proc. the 2007 ESO Instrument Calibration Workshop, p. 225
  • Käufl, H.U., Ballester, P., Biereichel, P., (2004) Proc. SPIE, 5492, p. 1218
  • Linsky, J.L., Haisch, B.M., (1979) ApJ, 229, pp. L27
  • Maggio, A., Vaiana, G.S., Haisch, B.M., (1990) ApJ, 348, p. 253
  • Mauas, P.J., Avrett, E.H., Loeser, R., (1988) ApJ, 330, p. 1008
  • Mauas, P.J., Avrett, E.H., Loeser, R., (1990) ApJ, 357, p. 279
  • Mauas, P.J., Fernández Borda, R., Luoni, M.L., (2002) ApJS, 142, p. 285
  • Mauas, P.J.D., Andretta, V., Falchi, A., (2005) ApJ, 619, p. 604
  • Mauas, P.J.D., Cacciari, C., Pasquini, L., (2006) A&A, 454, p. 609
  • Moehler, S., Dreizler, S., Lanz, T., (2007) A&A, 475, pp. L5
  • Brien G T, O.'., Lambert, D.L., (1986) ApJS, 62, p. 899
  • Pancino, E., Mucciarelli, A., Sbordone, L., (2011) A&A, 527, p. 18
  • Pasquini, L., Fleming, T., Spite, F., Spite, M., (1991) A&A, 249, pp. L23
  • Piotto, G., Villanova, S., Bedin, L.R., (2005) ApJ, 621, p. 777
  • Piotto, G., Bedin, L., Anderson, J., (2007) ApJ, 661, pp. L53
  • Smith, G.H., Dupree, A.K., Straeder, J., (2004) PASP, 116, p. 819
  • Stetson, P.B., Pancino, E., (2008) PASP, 120, p. 1332
  • Wallace, L., Hinkle, K., Livingston, W., (1993) An Atlas of the Photospheric Spectrum from 8900 to 13600 cm-1 (7350 to 11 230 Å), , N.S.O. Technical Report #93-001
  • Zirin, H., (1982) ApJ, 665, p. 669

Citas:

---------- APA ----------
Pasquini, L., Mauas, P., Käufl, H.U. & Cacciari, C. (2011) . Measuring helium abundance difference in giants of NGC 2808. Astronomy and Astrophysics, 531.
http://dx.doi.org/10.1051/0004-6361/201116592
---------- CHICAGO ----------
Pasquini, L., Mauas, P., Käufl, H.U., Cacciari, C. "Measuring helium abundance difference in giants of NGC 2808" . Astronomy and Astrophysics 531 (2011).
http://dx.doi.org/10.1051/0004-6361/201116592
---------- MLA ----------
Pasquini, L., Mauas, P., Käufl, H.U., Cacciari, C. "Measuring helium abundance difference in giants of NGC 2808" . Astronomy and Astrophysics, vol. 531, 2011.
http://dx.doi.org/10.1051/0004-6361/201116592
---------- VANCOUVER ----------
Pasquini, L., Mauas, P., Käufl, H.U., Cacciari, C. Measuring helium abundance difference in giants of NGC 2808. Astron. Astrophys. 2011;531.
http://dx.doi.org/10.1051/0004-6361/201116592