Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Context. Magnetic clouds (MCs) are formed by magnetic flux ropes that are ejected from the Sun as coronal mass ejections. These structures generally have low plasma beta and travel through the interplanetary medium interacting with the surrounding solar wind. Thus, the dynamical evolution of the internal magnetic structure of a MC is a consequence of both the conditions of its environment and of its own dynamical laws, which are mainly dominated by magnetic forces.Aims. With in-situ observations the magnetic field is only measured along the trajectory of the spacecraft across the MC. Therefore, a magnetic model is needed to reconstruct the magnetic configuration of the encountered MC. The main aim of the present work is to extend the widely used cylindrical model to arbitrary cross-section shapes.Methods. The flux rope boundary is parametrized to account for a broad range of shapes. Then, the internal structure of the flux rope is computed by expressing the magnetic field as a series of modes of a linear force-free field.Results. We analyze the magnetic field profile along straight cuts through the flux rope, in order to simulate the spacecraft crossing through a MC. We find that the magnetic field orientation is only weakly affected by the shape of the MC boundary. Therefore, the MC axis can approximately be found by the typical methods previously used (e.g., minimum variance). The boundary shape affects the magnetic field strength most. The measurement of how much the field strength peaks along the crossing provides an estimation of the aspect ratio of the flux-rope cross-section. The asymmetry of the field strength between the front and the back of the MC, after correcting for the time evolution (i.e., its aging during the observation of the MC), provides an estimation of the cross-section global bending. A flat or/and bent cross-section requires a large anisotropy of the total pressure imposed at the MC boundary by the surrounding medium.Conclusions. The new theoretical model developed here relaxes the cylindrical symmetry hypothesis. It is designed to estimate the cross-section shape of the flux rope using the in-situ data of one spacecraft. This allows a more accurate determination of the global quantities, such as magnetic fluxes and helicity. These quantities are especially important for both linking an observed MC to its solar source and for understanding the corresponding evolution. © 2009 ESO.

Registro:

Documento: Artículo
Título:Magnetic cloud models with bent and oblate cross-section boundaries
Autor:Démoulin, P.; Dasso, S.
Filiación:Observatoire de Paris, LESIA, UMR 8109 (CNRS), 92195 Meudon Principal Cedex, France
Instituto de Astronomía y Física Del Espacio, CONICET-UBA, Suc. 28, 1428 Buenos Aires, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Palabras clave:Interplanetary medium; Sun: coronal mass ejections (CMEs); Sun: magnetic fields; Arbitrary cross section; Boundary shapes; Coronal mass ejection; Cylindrical models; Cylindrical symmetry; Dynamical evolution; Field strengths; Flux ropes; Global quantities; Helicities; In-situ data; In-situ observations; Internal structure; Interplanetary medium; Large anisotropy; Magnetic clouds; Magnetic configuration; Magnetic field orientations; Magnetic field profile; Magnetic field strengths; Magnetic flux ropes; Magnetic models; Minimum variance; Solar source; Sun: coronal mass ejection; Sun: magnetic field; Theoretical models; Time evolutions; Total pressure; Aspect ratio; Astrophysics; Boundary layer flow; Interplanetary spacecraft; Magnetic fields; Magnetic flux; Magnetic structure; Planetary surface analysis; Solar wind; Sun; Semiconductor counters
Año:2009
Volumen:507
Número:2
Página de inicio:969
Página de fin:980
DOI: http://dx.doi.org/10.1051/0004-6361/200912645
Título revista:Astronomy and Astrophysics
Título revista abreviado:Astron. Astrophys.
ISSN:00046361
CODEN:AAEJA
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00046361_v507_n2_p969_Demoulin.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00046361_v507_n2_p969_Demoulin

Referencias:

  • Berger, M.A., Field, G.B., (1984) J. Fluid. Mech., 147, p. 147
  • Berger, M.A., (2003) Advances in Nonlinear Dynamics, 345
  • Botha, G.J.J., Evangelidis, E.A., (2004) MNRAS, 350, p. 350
  • Bothmer, V., Schwenn, R., (1998) Annales Geophys., 16, p. 16
  • Burlaga, L.F., (1988) J. Geophys. Res., 93, p. 93
  • Burlaga, L.F., (1995) Interplanetary Magnetohydrodynamics (New York: Oxford University Press)
  • Burlaga, L.F., Behannon, K.W., (1982) Sol. Phys., 81, p. 81
  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R., (1981) J. Geophys. Res., 86, p. 86
  • Burlaga, L.F., Klein, L., Sheeley Jr., N.R., (1982) Geophys. Res. Lett., 9, p. 9
  • Cid, C., Hidalgo, M.A., Nieves-Chinchilla, T., Sequeiros, J., Viñas, A.F., (2002) Sol. Phys., 207, p. 207
  • Dasso, S., Mandrini, C.H., Démoulin, P., Farrugia, C.J., (2003) J. Geophys. Res., 108, p. 108
  • Dasso, S., Gulisano, A.M., Mandrini, C.H., Démoulin, P., (2005) Adv. Space Res., 35, p. 35
  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L., Gulisano, A.M., (2005) Adv. Space Res., 35, p. 35
  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L., (2006) A&A, 455, p. 455
  • Dasso, S., Nakwacki, M.S., Démoulin, P., Mandrini, C.H., (2007) Sol. Phys., 244, p. 244
  • Démoulin, P., (2008) Annales Geophys., 26, p. 26
  • Démoulin, P., Dasso, S., (2009) A&A, 498, p. 498
  • Démoulin, P., Nakwacki, M.S., Dasso, S., Mandrini, C.H., (2008) Sol. Phys., 250, p. 250
  • Farrugia, C.J., Janoo, L.A., Torbert, R.B., Solar wind nine (1999) AIP Conf. Proc., 471, p. 471. , ed. S. R. Habbal, R. Esser, J. V. Hollweg, & P. A. Isenberg
  • Feng, H.Q., Wu, D.J., Chao, J.K., (2007) J. Geophys. Res., 112, pp. A02102
  • Gold, T., Hoyle, F., (1960) MNRAS, 120, p. 120
  • Gulisano, A.M., Dasso, S., Mandrini, C.H., Démoulin, P., (2005) J. Atmosph. Sol.-Terrestr. Phys., 67, p. 67
  • Gulisano, A.M., Dasso, S., Mandrini, C.H., Démoulin, P., (2007) Adv. Space Res., 40, p. 40
  • Hidalgo, M.A., (2003) J. Geophys. Res., 108, p. 108
  • Hu, Q., Sonnerup, B.U.O., (2002) J. Geophys. Res., 107, p. 107
  • Hu, Q., Smith, C.W., Ness, N.F., Skoug, R.M., (2005) J. Geophys. Res., 110, pp. A09S03
  • Kilpua, E.K.J., Liewer, P.C., Farrugia, C., (2009) Sol. Phys., 254, p. 254
  • Klein, L.W., Burlaga, L.F., (1982) J. Geophys. Res., 87, p. 87
  • Leitner, M., Farrugia, C.J., Möstl, C., (2007) J. Geophys. Res., 112, pp. A06113
  • Lepping, R.P., Burlaga, L.F., Jones, J.A., (1990) J. Geophys. Res., 95, p. 95
  • Lepping, R.P., Berdichevsky, D.B., Szabo, A., Arqueros, C., Lazarus, A.J., (2003) Sol. Phys., 212, p. 212
  • Liu, Y., Luhmann, J.G., Huttunen, K.E.J., (2008) ApJ, 677, pp. L133
  • Lundquist, S., (1950) Ark. Fys., 2, p. 2
  • Lynch, B.J., Zurbuchen, T.H., Fisk, L.A., Antiochos, S.K., (2003) J. Geophys. Res., 108, p. 108
  • Manchester, W.B.I., Gombosi, T.I., Roussev, I., (2004) J. Geophys. Res., 109, pp. A02107
  • Mandrini, C.H., Pohjolainen, S., Dasso, S., (2005) A&A, 434, p. 434
  • Mandrini, C.H., Nakwacki, M., Attrill, G., (2007) Sol. Phys., 244, p. 244
  • Moon, P., Spencer, D.E., (1988) Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions, , 2nd ed. ( New York: Springer-Verlag)
  • Morse, P.M., Feshbach, H., (1953) Methods of Theoretical Physics, , Part I (New York: McGraw-Hill)
  • Möstl, C., Farrugia, C.J., Biernat, H.K., (2009) Sol. Phys., 256, p. 256
  • Mulligan, T., Russell, C.T., Anderson, B.J., Solar Wind Nine (1999) AIP Conf. Proc., 471, p. 471. , ed. S. R. Habbal, R. Esser, J. V. Hollweg, & P. A. Isenberg
  • Owens, M.J., Merkin, V.G., Riley, P., (2006) J. Geophys. Res., 111, pp. A03104
  • Riley, P., Linker, J.A., Mikić, Z., (2003) J. Geophys. Res., 108, p. 108
  • Riley, P., Linker, J.A., Lionello, R., (2004) J. Atmos. Sol. Terr. Phys., 66, p. 66
  • Romashets, E.P., Vandas, M., (2005) Adv. Spa. Res., 35, p. 35
  • Sonnerup, B.U., Cahill, L.J., (1967) J. Geophys. Res., 72, p. 72
  • Trott, M., (2006) The Mathematica Guidebook for Numerics (Springer)
  • Vandas, M., Romashets, E.P., (2003) A&A, 398, p. 398
  • Vandas, M., Odstrcil, D., Watari, S., (2002) J. Geophys. Res., 107, p. 107
  • Vandas, M., Romashets, E.P., Watari, S., (2005) Planet. Space Sci., 53, p. 53
  • Vladimirov, V.S., (1984) Equations of Mathematical Physics (Mir, Moscow)
  • Wu, C.-C., Lepping, R.P., (2007) Sol. Phys., 242, p. 159

Citas:

---------- APA ----------
Démoulin, P. & Dasso, S. (2009) . Magnetic cloud models with bent and oblate cross-section boundaries. Astronomy and Astrophysics, 507(2), 969-980.
http://dx.doi.org/10.1051/0004-6361/200912645
---------- CHICAGO ----------
Démoulin, P., Dasso, S. "Magnetic cloud models with bent and oblate cross-section boundaries" . Astronomy and Astrophysics 507, no. 2 (2009) : 969-980.
http://dx.doi.org/10.1051/0004-6361/200912645
---------- MLA ----------
Démoulin, P., Dasso, S. "Magnetic cloud models with bent and oblate cross-section boundaries" . Astronomy and Astrophysics, vol. 507, no. 2, 2009, pp. 969-980.
http://dx.doi.org/10.1051/0004-6361/200912645
---------- VANCOUVER ----------
Démoulin, P., Dasso, S. Magnetic cloud models with bent and oblate cross-section boundaries. Astron. Astrophys. 2009;507(2):969-980.
http://dx.doi.org/10.1051/0004-6361/200912645