Artículo

Oviedo-Rouco, S.; Castro, M.A.; Alvarez-Paggi, D.; Spedalieri, C.; Tortora, V.; Tomasina, F.; Radi, R.; Murgida, D.H. "The alkaline transition of cytochrome c revisited: Effects of electrostatic interactions and tyrosine nitration on the reaction dynamics" (2019) Archives of Biochemistry and Biophysics. 665:96-106
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Here we investigated the effect of electrostatic interactions and of protein tyrosine nitration of mammalian cytochrome c on the dynamics of the so-called alkaline transition, a pH- and redox-triggered conformational change that implies replacement of the axial ligand Met80 by a Lys residue. Using a combination of electrochemical, time-resolved SERR spectroelectrochemical experiments and molecular dynamics simulations we showed that in all cases the reaction can be described in terms of a two steps minimal reaction mechanism consisting of deprotonation of a triggering group followed by ligand exchange. The pK a alk values of the transition are strongly modulated by these perturbations, with a drastic downshift upon nitration and an important upshift upon establishing electrostatic interactions with a negatively charged model surface. The value of pK a alk is determined by the interplay between the acidity of a triggering group and the kinetic constants for the forward and backward ligand exchange processes. Nitration of Tyr74 results in a change of the triggering group from Lys73 in WT Cyt to Tyr74 in the nitrated protein, which dominates the pK a alk downshift towards physiological values. Electrostatic interactions, on the other hand, result in strong acceleration of the backward ligand exchange reaction, which dominates the pK a alk upshift. The different physicochemical conditions found here to influence pK a alk are expected to vary depending on cellular conditions and subcellular localization of the protein, thus determining the existence of alternative conformations of Cyt in vivo. © 2019 Elsevier Inc.

Registro:

Documento: Artículo
Título:The alkaline transition of cytochrome c revisited: Effects of electrostatic interactions and tyrosine nitration on the reaction dynamics
Autor:Oviedo-Rouco, S.; Castro, M.A.; Alvarez-Paggi, D.; Spedalieri, C.; Tortora, V.; Tomasina, F.; Radi, R.; Murgida, D.H.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires, C1428EHA, Argentina
Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la Republica, Av. Gral. Flores 2125, Montevideo, 11800, Uruguay
Palabras clave:Alkaline transition; Cytochrome c; Protein electron transfer; Protein nitration; Protein spectroelectrochemistry; Time-resolved SERR; cytochrome c; ligand; tyrosine; alkalinity; Article; cellular distribution; chemical reaction kinetics; conformational transition; cyclic potentiometry; deprotonation; electrochemical analysis; model; molecular dynamics; nitration; oxidation reduction reaction; pH; pKa; priority journal; protein conformation; Raman spectrometry; reaction analysis; static electricity; surface property
Año:2019
Volumen:665
Página de inicio:96
Página de fin:106
DOI: http://dx.doi.org/10.1016/j.abb.2019.02.016
Título revista:Archives of Biochemistry and Biophysics
Título revista abreviado:Arch. Biochem. Biophys.
ISSN:00039861
CODEN:ABBIA
CAS:cytochrome c, 9007-43-6, 9064-84-0; tyrosine, 16870-43-2, 55520-40-6, 60-18-4
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00039861_v665_n_p96_OviedoRouco

Referencias:

  • Bertini, I., Cavallaro, G., Rosato, A., Cytochrome c : occurrence and functions (2006) Chem. Rev., 106, pp. 90-115
  • Scott, R.A., (1996) Cytochrome C, , A Multidisciplinary Approach Sausalito, CA
  • Alvarez-Paggi, D., Hannibal, L., Castro, M.A., Oviedo-Rouco, S., Demicheli, V., Tórtora, V., Tomasina, F., Murgida, D.H., Multifunctional cytochrome c: learning new tricks from an old dog (2017) Chem. Rev., 117, pp. 13382-13460
  • Hannibal, L., Tomasina, F., Capdevila, D.A., Demicheli, V., Tórtora, V., Alvarez-Paggi, D., Jemmerson, R., Radi, R., Alternative conformations of cytochrome c: structure, function, and detection (2016) Biochemistry, 55, pp. 407-428
  • Kagan, V.E., Tyurin, V.A., Jiang, J., Tyurina, Y.Y., Ritov, V.B., Amoscato, A.A., Osipov, A.N., Borisenko, G.G., Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors (2005) Nat. Chem. Biol., 1, pp. 223-232
  • Yuan, S., Akey, C.W., Apoptosome structure, assembly, and procaspase activation (2013) Structure, 21, pp. 501-515
  • González-Arzola, K., Díaz-Moreno, I., Cano-González, A., Díaz-Quintana, A., Velázquez-Campoy, A., Moreno-Beltrán, B., López-Rivas, A., la Rosa, M.A.D., Structural basis for inhibition of the histone chaperone activity of SET/TAF-Iβ by cytochrome c (2015) Proc. Natl. Acad. Sci. Unit. States Am., 112, pp. 9908-9913
  • García-Heredia, J.M., Díaz-Quintana, A., Salzano, M., Orzáez, M., Pérez-Payá, E., Teixeira, M., De la Rosa, M.A., Díaz-Moreno, I., Tyrosine phosphorylation turns alkaline transition into a biologically relevant process and makes human cytochrome c behave as an anti-apoptotic switch (2011) J. Biol. Inorg. Chem., 16, pp. 1155-1168
  • Capdevila, D.A., Marmisollé, W.A., Tomasina, F., Demicheli, V., Portela, M., Radi, R., Murgida, D.H., Specific methionine oxidation of cytochrome c in complexes with zwitterionic lipids by hydrogen peroxide: potential implications for apoptosis (2015) Chem. Sci., 6, pp. 705-713
  • Radi, R., Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects (2013) Acc. Chem. Res., 46, pp. 550-559
  • García-Heredia, J.M., Díaz-Moreno, I., Nieto, P.M., Orzáez, M., Kocanis, S., Teixeira, M., Pérez-Payá, E., De la Rosa, M.A., Nitration of tyrosine 74 prevents human cytochrome c to play a key role in apoptosis signaling by blocking caspase-9 activation (2010) Biochim. Biophys. Acta BBA - Bioenerg., 1797, pp. 981-993
  • Weinkam, P., Zimmermann, J., Romesberg, F.E., Wolynes, P.G., The folding energy landscape and free energy excitations of cytochrome c (2010) Acc. Chem. Res., 43, pp. 652-660
  • Cherney, M.M., Bowler, B.E., Protein dynamics and function: making new strides with an old warhorse, the alkaline conformational transition of cytochrome c (2011) Coord. Chem. Rev., 255, pp. 664-677
  • Maity, H., Rumbley, J.N., Englander, S.W., Functional role of a protein foldon—an Ω-loop foldon controls the alkaline transition in ferricytochrome c (2006) Proteins Struct. Funct. Bioinforma., 63, pp. 349-355
  • Bushnell, G.W., Louie, G.V., Brayer, G.D., High-resolution three-dimensional structure of horse heart cytochrome c (1990) J. Mol. Biol., 214, pp. 585-595
  • Banci, L., Bertini, I., Huber, J.G., Spyroulias, G.A., Turano, P., Solution structure of reduced horse heart cytochrome c (1999) JBIC J. Biol. Inorg. Chem., 4, pp. 21-31
  • Banci, L., Bertini, I., Gray, H.B., Luchinat, C., Reddig, T., Rosato, A., Turano, P., Solution structure of oxidized horse heart cytochrome c (1997) Biochemistry, 36, pp. 9867-9877
  • Oellerich, S., Wackerbarth, H., Hildebrandt, P., Spectroscopic characterization of nonnative conformational states of cytochrome c (2002) J. Phys. Chem. B, 106, pp. 6566-6580
  • Milazzo, L., Tognaccini, L., Howes, B.D., Smulevich, G., Probing the non-native states of Cytochrome c with resonance Raman spectroscopy: a tool for investigating the structure–function relationship (2018) J. Raman Spectrosc., 49, pp. 1041-1055
  • Nelson, C.J., Bowler, B.E., pH dependence of formation of a partially unfolded state of a Lys 73 → His variant of iso-1-cytochrome c:  implications for the alkaline conformational transition of cytochrome c (2000) Biochemistry, 39, pp. 13584-13594
  • Hoang, L., Maity, H., Krishna, M.M.G., Lin, Y., Englander, S.W., Folding units govern the cytochrome c alkaline transition (2003) J. Mol. Biol., 331, pp. 37-43
  • Alvarez-Paggi, D., Martín, D.F., Debiase, P.M., Hildebrandt, P., Martí, M.A., Murgida, D.H., Molecular basis of coupled protein and electron transfer dynamics of cytochrome c in biomimetic complexes (2010) J. Am. Chem. Soc., 132, pp. 5769-5778
  • Elmer-Dixon, M.M., Bowler, B.E., Electrostatic constituents of the interaction of cardiolipin with site a of cytochrome c (2018) Biochemistry, 57, pp. 5683-5695
  • De, B., Paggi, D.A., Doctorovich, F., Hildebrandt, P., Estrin, D.A., Murgida, D.H., Marti, M.A., Molecular basis for the electric field modulation of cytochrome c structure and function (2009) J. Am. Chem. Soc., 131, pp. 16248-16256
  • Alvarez-Paggi, D., Castro, M.A., Tórtora, V., Castro, L., Radi, R., Murgida, D.H., Electrostatically driven second-sphere ligand switch between high and low reorganization energy forms of native cytochrome c (2013) J. Am. Chem. Soc., 135, pp. 4389-4397
  • Capdevila, D.A., Oviedo, R., Tomasina, F., Tortora, V., Demicheli, V., Radi, R., Murgida, D.H., Active site structure and peroxidase activity of oxidatively modified cytochrome c species in complexes with cardiolipin (2015) Biochemistry, 54, pp. 7491-7504
  • Abriata, L.A., Cassina, A., Tórtora, V., Marín, M., Souza, J.M., Castro, L., Vila, A.J., Radi, R., Nitration of solvent-exposed tyrosine 74 on cytochrome c triggers heme iron-methionine 80 bond disruption. Nuclear magnetic resonance and optical spectroscopy studies (2009) J. Biol. Chem., 284, pp. 17-26
  • Capdevila, D.A., Álvarez-Paggi, D., Castro, M.A., Tórtora, V., Demicheli, V., Estrín, D.A., Radi, R., Murgida, D.H., Coupling of tyrosine deprotonation and axial ligand exchange in nitrocytochrome c (2014) Chem. Commun., 50, pp. 2592-2594
  • Theorell, H., Åkesson, Å., Studies on cytochrome c. III. Titration curves (1941) J. Am. Chem. Soc., 63, pp. 1818-1820
  • Gadsby, P.M., Peterson, J., Foote, N., Greenwood, C., Thomson, A.J., Identification of the ligand-exchange process in the alkaline transition of horse heart cytochrome c (1987) Biochem. J., 246, pp. 43-54
  • Rosell, F.I., Ferrer, J.C., Mauk, A.G., Proton-linked protein conformational Switching:  definition of the alkaline conformational transition of yeast iso-1-ferricytochrome c (1998) J. Am. Chem. Soc., 120, pp. 11234-11245
  • Döpner, S., Hildebrandt, P., Rosell, F.I., Mauk, A.G., Alkaline conformational transitions of ferricytochrome c studied by resonance Raman spectroscopy (1998) J. Am. Chem. Soc., 120, pp. 11246-11255
  • Amacher, J.F., Zhong, F., Lisi, G.P., Zhu, M.Q., Alden, S.L., Hoke, K.R., Madden, D.R., Pletneva, E.V., A compact structure of cytochrome c trapped in a lysine-ligated state: loop refolding and functional implications of a conformational switch (2015) J. Am. Chem. Soc., 137, pp. 8435-8449
  • Assfalg, M., Bertini, I., Dolfi, A., Turano, P., Mauk, A.G., Rosell, F.I., Gray, H.B., Structural model for an alkaline form of ferricytochrome c (2003) J. Am. Chem. Soc., 125, pp. 2913-2922
  • Alvarez-Paggi, D., Hannibal, L., Castro, M.A., Oviedo-Rouco, S., Demicheli, V., Tórtora, V., Tomasina, F., Murgida, D.H., Multifunctional cytochrome c: learning new tricks from an old dog (2017) Chem. Rev., 117, pp. 13382-13460
  • Josephs, T.M., Liptak, M.D., Hughes, G., Lo, A., Smith, R.M., Wilbanks, S.M., Bren, K.L., Ledgerwood, E.C., Conformational change and human cytochrome c function: mutation of residue 41 modulates caspase activation and destabilizes Met-80 coordination (2013) JBIC J. Biol. Inorg. Chem., 18, pp. 289-297
  • Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T., O'Donnell-Luria, A.H., MacArthur, D.G., Exome Aggregation Consortium, Analysis of protein-coding genetic variation in 60,706 humans (2016) Nature, 536, pp. 285-291
  • Kluck, R.M., Ellerby, L.M., Ellerby, H.M., Naiem, S., Yaffe, M.P., Margoliash, E., Bredesen, D., Newmeyer, D.D., Determinants of cytochrome c pro-apoptotic activity. The role of lysine 72 trimethylation (2000) J. Biol. Chem., 275, pp. 16127-16133
  • Kim, S.C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., Cheng, T., Zhao, Y., Substrate and functional diversity of lysine acetylation revealed by a proteomics survey (2006) Mol. Cell., 23, pp. 607-618
  • Davis, L.A., Schejter, A., Hess, G.P., Alkaline isomerization of oxidized cytochrome c. Equilibrium and kinetic measurements (1974) J. Biol. Chem., 249, pp. 2624-2632
  • Cortese, J.D., Voglino, A.L., Hackenbrock, C.R., Persistence of cytochrome c binding to membranes at physiological mitochondrial intermembrane space ionic strength (1995) Biochim. Biophys. Acta BBA - Bioenerg., 1228, pp. 216-228
  • Kobayashi, H., Nagao, S., Hirota, S., Characterization of the cytochrome c membrane-binding site using cardiolipin-containing bicelles with NMR (2016) Angew. Chem. Int. Ed., 55, pp. 14019-14022
  • Murgida, D.H., Hildebrandt, P., Electron-transfer processes of cytochrome c at interfaces. New insights by surface-enhanced resonance Raman spectroscopy (2004) Acc. Chem. Res., 37, pp. 854-861
  • Murgida, D.H., Hildebrandt, P., Redox and redox-coupled processes of heme proteins and enzymes at electrochemical interfaces (2005) Phys. Chem. Chem. Phys., 7, pp. 3773-3784
  • Murgida, D.H., Hildebrandt, P., Disentangling interfacial redox processes of proteins by SERR spectroscopy (2008) Chem. Soc. Rev., 37, pp. 937-945
  • Sinibaldi, F., Milazzo, L., Howes, B.D., Piro, M.C., Fiorucci, L., Polticelli, F., Ascenzi, P., Santucci, R., The key role played by charge in the interaction of cytochrome c with cardiolipin (2017) JBIC J. Biol. Inorg. Chem., 22, pp. 19-29
  • Alvarez-Paggi, D., Meister, W., Kuhlmann, U., Weidinger, I., Tenger, K., Zimányi, L., Rákhely, G., Murgida, D.H., Disentangling electron tunneling and protein dynamics of cytochrome c through a rationally designed surface mutation (2013) J. Phys. Chem. B, 117, pp. 6061-6068
  • Cherney, M.M., Junior, C.C., Bergquist, B.B., Bowler, B.E., Dynamics of the His79-Heme Alkaline Transition of Yeast Iso-1-cytochrome c Probed by Conformationally Gated Electron Transfer with Co(II)bis(terpyridine) (2013) J. Am. Chem. Soc., 135, pp. 12772-12782
  • Bandi, S., Bowler, B.E., A cytochrome C electron transfer switch modulated by heme ligation and isomerization of a peptidyl-prolyl bond (2013) Pept. Sci., 100, pp. 114-124
  • Döpner, S., Hildebrandt, P., Grant Mauk, A., Lenk, H., Stempfle, W., Analysis of vibrational spectra of multicomponent systems. Application to pH-dependent resonance Raman spectra of ferricytochrome c (1996) Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 52, pp. 573-584
  • (2016) AMBER 2016, , University of California San Francisco
  • Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R., Molecular dynamics with coupling to an external bath (1984) J. Chem. Phys., 81, pp. 3684-3690
  • Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J.C., Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes (1977) J. Comput. Phys., 23, pp. 327-341
  • Moreno, D.M., Martí, M.A., De Biase, P.M., Estrin, D.A., Demicheli, V., Radi, R., Boechi, L., Exploring the molecular basis of human manganese superoxide dismutase inactivation mediated by tyrosine 34 nitration (2011) Arch. Biochem. Biophys., 507, pp. 304-309
  • Mongan, J., Case, D.A., McCammon, J.A., Constant pH molecular dynamics in generalized Born implicit solvent (2004) J. Comput. Chem., 25, pp. 2038-2048
  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E., Equation of state calculations by fast computing machines (1953) J. Chem. Phys., 21, pp. 1087-1092
  • Murgida, D.H., Hildebrandt, P., Heterogeneous electron transfer of cytochrome c on coated silver electrodes. Electric field effects on structure and redox potential (2001) J. Phys. Chem. B, 105, pp. 1578-1586
  • Petrović, J., Clark, R.A., Yue, H., Waldeck, D.H., Bowden, E.F., Impact of surface immobilization and solution ionic strength on the formal potential of immobilized cytochrome c (2005) Langmuir, 21, pp. 6308-6316
  • Battistuzzi, G., Borsari, M., Loschi, L., Martinelli, A., Sola, M., Thermodynamics of the alkaline transition of cytochrome c (1999) Biochemistry, 38, pp. 7900-7907
  • Kranich, A., Ly, H.K., Hildebrandt, P., Murgida, D.H., Direct observation of the gating step in protein electron transfer: electric-field-controlled protein dynamics (2008) J. Am. Chem. Soc., 130, pp. 9844-9848
  • Paggi, D.A., Martín, D.F., Kranich, A., Hildebrandt, P., Martí, M.A., Murgida, D.H., Computer simulation and SERR detection of cytochrome c dynamics at SAM-coated electrodes (2009) Electrochim. Acta, 54, pp. 4963-4970
  • Battistuzzi, G., Borsari, M., De Rienzo, F., Di Rocco, G., Ranieri, A., Sola, M., Free energy of transition for the individual alkaline conformers of yeast iso-1-cytochrome c (2007) Biochemistry, 46, pp. 1694-1702
  • Hartshorn, R.T., Moore, G.R., A denaturation-induced proton-uptake study of horse ferricytochrome c (1989) Biochem. J., 258, pp. 595-598
  • Silkstone, G.G., Cooper, C.E., Svistunenko, D., Wilson, M.T., EPR and optical spectroscopic studies of Met80X mutants of yeast ferricytochrome c. Models for intermediates in the alkaline transition (2005) J. Am. Chem. Soc., 127, pp. 92-99
  • Rosell, F.I., Harris, T.R., Hildebrand, D.P., Döpner, S., Hildebrandt, P., Mauk, A.G., Characterization of an alkaline transition intermediate stabilized in the Phe82Trp variant of yeast iso-1-cytochrome c (2000) Biochemistry, 39, pp. 9047-9054
  • Deacon, O.M., Svistunenko, D.A., Moore, G.R., Wilson, M.T., Worrall, J.A.R., Naturally occurring disease-related mutations in the 40–57 Ω-loop of human cytochrome c control triggering of the alkaline isomerization (2018) Biochemistry, 57, pp. 4276-4288
  • Zaidi, S., Hassan, M.I., Islam, A., Ahmad, F., The role of key residues in structure, function, and stability of cytochrome c (2014) Cell. Mol. Life Sci., 71, pp. 229-255
  • Santo-Domingo, J., Demaurex, N., The renaissance of mitochondrial pH (2012) J. Gen. Physiol., 139, pp. 415-423

Citas:

---------- APA ----------
Oviedo-Rouco, S., Castro, M.A., Alvarez-Paggi, D., Spedalieri, C., Tortora, V., Tomasina, F., Radi, R.,..., Murgida, D.H. (2019) . The alkaline transition of cytochrome c revisited: Effects of electrostatic interactions and tyrosine nitration on the reaction dynamics. Archives of Biochemistry and Biophysics, 665, 96-106.
http://dx.doi.org/10.1016/j.abb.2019.02.016
---------- CHICAGO ----------
Oviedo-Rouco, S., Castro, M.A., Alvarez-Paggi, D., Spedalieri, C., Tortora, V., Tomasina, F., et al. "The alkaline transition of cytochrome c revisited: Effects of electrostatic interactions and tyrosine nitration on the reaction dynamics" . Archives of Biochemistry and Biophysics 665 (2019) : 96-106.
http://dx.doi.org/10.1016/j.abb.2019.02.016
---------- MLA ----------
Oviedo-Rouco, S., Castro, M.A., Alvarez-Paggi, D., Spedalieri, C., Tortora, V., Tomasina, F., et al. "The alkaline transition of cytochrome c revisited: Effects of electrostatic interactions and tyrosine nitration on the reaction dynamics" . Archives of Biochemistry and Biophysics, vol. 665, 2019, pp. 96-106.
http://dx.doi.org/10.1016/j.abb.2019.02.016
---------- VANCOUVER ----------
Oviedo-Rouco, S., Castro, M.A., Alvarez-Paggi, D., Spedalieri, C., Tortora, V., Tomasina, F., et al. The alkaline transition of cytochrome c revisited: Effects of electrostatic interactions and tyrosine nitration on the reaction dynamics. Arch. Biochem. Biophys. 2019;665:96-106.
http://dx.doi.org/10.1016/j.abb.2019.02.016