Artículo

Martínez, J.H.; Fuentes, F.; Vanasco, V.; Alvarez, S.; Alaimo, A.; Cassina, A.; Coluccio Leskow, F.; Velazquez, F. "Alpha-synuclein mitochondrial interaction leads to irreversible translocation and complex I impairment" (2018) Archives of Biochemistry and Biophysics. 651:1-12
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

α-synuclein is involved in both familial and sporadic Parkinson's disease. Although its interaction with mitochondria has been well documented, several aspects remains unknown or under debate such as the specific sub-mitochondrial localization or the dynamics of the interaction. It has been suggested that α-synuclein could only interact with ER-associated mitochondria. The vast use of model systems and experimental conditions makes difficult to compare results and extract definitive conclusions. Here we tackle this by analyzing, in a simplified system, the interaction between purified α-synuclein and isolated rat brain mitochondria. This work shows that wild type α-synuclein interacts with isolated mitochondria and translocates into the mitochondrial matrix. This interaction and the irreversibility of α-synuclein translocation depend on incubation time and α-synuclein concentration. FRET experiments show that α-synuclein localizes close to components of the TOM complex suggesting a passive transport of α-synuclein through the outer membrane. In addition, α-synuclein binding alters mitochondrial function at the level of Complex I leading to a decrease in ATP synthesis and an increase of ROS production. © 2018

Registro:

Documento: Artículo
Título:Alpha-synuclein mitochondrial interaction leads to irreversible translocation and complex I impairment
Autor:Martínez, J.H.; Fuentes, F.; Vanasco, V.; Alvarez, S.; Alaimo, A.; Cassina, A.; Coluccio Leskow, F.; Velazquez, F.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
Instituto de Medicina Experimental- IMEX, CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, Argentina
CEINBIO, Depto. Bioquímica, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina
Palabras clave:Mitochondria; Mitochondrial metabolism; Parkinson's disease; α-synuclein; adenosine triphosphate; alpha synuclein; reactive oxygen metabolite; recombinant protein; reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone); translocase of outer mitochondrial membrane 20; adult; animal cell; animal experiment; animal tissue; Article; brain mitochondrion; cell isolation; controlled study; electron transport; fluorescence resonance energy transfer; male; mitochondrial membrane potential; mitochondrial respiration; nonhuman; nucleic acid synthesis; outer membrane; passive transport; priority journal; protein interaction; protein localization; protein purification; protein transport; rat; respiratory chain
Año:2018
Volumen:651
Página de inicio:1
Página de fin:12
DOI: http://dx.doi.org/10.1016/j.abb.2018.04.018
Título revista:Archives of Biochemistry and Biophysics
Título revista abreviado:Arch. Biochem. Biophys.
ISSN:00039861
CODEN:ABBIA
CAS:adenosine triphosphate, 15237-44-2, 56-65-5, 987-65-5; alpha synuclein, 154040-18-3; reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone), 9028-04-0
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00039861_v651_n_p1_Martinez

Referencias:

  • Poewe, W., Seppi, K., Tanner, C.M., Halliday, G.M., Brundin, P., Volkmann, J., Schrag, A.-E., Lang, A.E., Parkinson disease (2017) Nat. Rev. Dis. Prim, 3, p. 17013
  • Devi, L., Anandatheerthavarada, H.K., Mitochondrial trafficking of APP and alpha synuclein: relevance to mitochondrial dysfunction in Alzheimer's and Parkinson's diseases (2010) Biochim. Biophys. Acta, 1802, pp. 11-19
  • Nakamura, K., α-Synuclein and mitochondria: partners in crime? (2013) Neurotherapeutics, 10, pp. 391-399
  • Hughes, A.J., Daniel, S.E., Ben-Shlomo, Y., Lees, A.J., The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service (2002) Brain, 125, pp. 861-870. , http://www.ncbi.nlm.nih.gov/pubmed/11912118, (Accessed 7 November 2017)
  • Recchia, A., Debetto, P., Negro, A., Guidolin, D., Skaper, S.D., Giusti, P., Alpha-synuclein and Parkinson's disease (2004) Faseb. J., 18, pp. 617-626
  • Emamzadeh, F.N., Alpha-synuclein structure, functions, and interactions (2016) J. Res. Med. Sci., 21, p. 29
  • Rcom-H'cheo-Gauthier, A.N., Osborne, S.L., Meedeniya, A.C.B., Pountney, D.L., Calcium: alpha- synuclein interactions in alpha-synucleinopathies (2016) Front. Neurosci., 10, p. 570
  • Zarranz, J.J., Alegre, J., Gómez-Esteban, J.C., Lezcano, E., Ros, R., Ampuero, I., Vidal, L., de Yebenes, J.G., The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia (2004) Ann. Neurol., 55, pp. 164-173
  • Krüger, R., Kuhn, W., Müller, T., Woitalla, D., Graeber, M., Kösel, S., Przuntek, H., Riess, O., Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease (1998) Nat. Genet., 18, pp. 106-108
  • Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Nussbaum, R.L., Mutation in the alpha-synuclein gene identified in families with Parkinson's disease (1997) Science, 276, pp. 2045-2047
  • Singleton, A.B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Gwinn-Hardy, K., alpha-Synuclein locus triplication causes Parkinson's disease (2003) Science, 302, p. 841
  • Chartier-Harlin, M.-C., Kachergus, J., Roumier, C., Mouroux, V., Douay, X., Lincoln, S., Levecque, C., Destée, A., α-synuclein locus duplication as a cause of familial Parkinson's disease (2004) Lancet, 364, pp. 1167-1169
  • Poole, A.C., Thomas, R.E., Andrews, L.A., McBride, H.M., Whitworth, A.J., Pallanck, L.J., The PINK1/Parkin pathway regulates mitochondrial morphology (2008) Proc. Natl. Acad. Sci. U. S. A, 105, pp. 1638-1643
  • Wang, X., Petrie, T.G., Liu, Y., Liu, J., Fujioka, H., Zhu, X., Parkinson's disease-associated DJ-1 mutations impair mitochondrial dynamics and cause mitochondrial dysfunction (2012) J. Neurochem., 121, pp. 830-839
  • Wang, X., Yan, M.H., Fujioka, H., Liu, J., Wilson-Delfosse, A., Chen, S.G., Perry, G., Zhu, X., LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1 (2012) Hum. Mol. Genet., 21, pp. 1931-1944
  • Yang, Y., Ouyang, Y., Yang, L., Beal, M.F., McQuibban, A., Vogel, H., Lu, B., Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery (2008) Proc. Natl. Acad. Sci. U. S. A, 105, pp. 7070-7075
  • Zheng, B., Liao, Z., Locascio, J.J., Lesniak, K.A., Roderick, S.S., Watt, M.L., Eklund, A.C., Scherzer, C.R., PGC-1α a potential therapeutic target for early intervention in Parkinson's disease (2010) Sci. Transl. Med., 2, pp. 52-73
  • V Schapira, A.H., Mitochondrial dysfunction in Parkinson's disease (2007) Cell Death Differ., 14, pp. 1261-1266
  • Schapira, A.H., Mann, V.M., Cooper, J.M., Dexter, D., Daniel, S.E., Jenner, P., Clark, J.B., Marsden, C.D., Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson's disease (1990) J. Neurochem., 55, pp. 2142-2145. , http://www.ncbi.nlm.nih.gov/pubmed/2121905, (Accessed 26 October 2017)
  • Martin, L.J., Pan, Y., Price, A.C., Sterling, W., Copeland, N.G., Jenkins, N.A., Price, D.L., Lee, M.K., Parkinson's disease -synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death (2006) J. Neurosci., 26, pp. 41-50
  • Li, W., Yang, R., Guo, J., Ren, H., Zha, X., Cheng, J., Cai, D., Localization of α-synuclein to mitochondria within midbrain of mice (2007) Neuroreport, 18, pp. 1543-1546
  • Devi, L., Raghavendran, V., Prabhu, B.M., Avadhani, N.G., Anandatheerthavarada, H.K., Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain (2008) J. Biol. Chem., 283, pp. 9089-9100
  • Parihar, M.S., Parihar, A., Fujita, M., Hashimoto, M., Ghafourifar, P., Mitochondrial association of alpha-synuclein causes oxidative stress (2008) Cell. Mol. Life Sci., 65, pp. 1272-1284
  • Shavali, S., Brown-Borg, H.M., Ebadi, M., Porter, J., Mitochondrial localization of alpha-synuclein protein in alpha-synuclein overexpressing cells (2008) Neurosci. Lett., 439, pp. 125-128
  • Di Maio, R., Barrett, P.J., Hoffman, E.K., Barrett, C.W., Zharikov, A., Borah, A., Hu, X., Greenamyre, J.T., α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson's disease (2016) Sci. Transl. Med., 8, pp. 342-378
  • Rideout, H.J., Dietrich, P., Savalle, M., Dauer, W.T., Stefanis, L., Regulation of α-synuclein by bFGF in cultured ventral midbrain dopaminergic neurons (2003) J. Neurochem., 84, pp. 803-813
  • Saito, Y., Kawashima, A., Ruberu, N.N., Fujiwara, H., Koyama, S., Sawabe, M., Arai, T., Murayama, S., Accumulation of phosphorylated alpha-synuclein in aging human brain (2003) J. Neuropathol. Exp. Neurol., 62, pp. 644-654. , http://www.ncbi.nlm.nih.gov/pubmed/12834109, (Accessed 26 October 2017)
  • Nakamura, K., Nemani, V.M., Azarbal, F., Skibinski, G., Levy, J.M., Egami, K., Munishkina, L., Edwards, R.H., Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein (2011) J. Biol. Chem., 286, pp. 20710-20726
  • Cole, N.B., DiEuliis, D., Leo, P., Mitchell, D.C., Nussbaum, R.L., Mitochondrial translocation of α- synuclein is promoted by intracellular acidification (2008) Exp. Cell Res., 314, pp. 2076-2089
  • Parihar, M.S., Parihar, A., Fujita, M., Hashimoto, M., Ghafourifar, P., Alpha-synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells (2009) Int. J. Biochem. Cell Biol., 41, pp. 2015-2024
  • Guardia-Laguarta, C., Area-Gomez, E., Rüb, C., Liu, Y., Magrané, J., Becker, D., Voos, W., Przedborski, S., α-Synuclein is localized to mitochondria-associated ER membranes (2014) J. Neurosci., 34, pp. 249-259
  • Ostrerova, N., Petrucelli, L., Farrer, M., Mehta, N., Choi, P., Hardy, J., Wolozin, B., alpha-Synuclein shares physical and functional homology with 14-3-3 proteins (1999) J. Neurosci., 19, pp. 5782-5791
  • John, M.J., Rawlingson, A., Brenda Daniels, A.J.M., *Regulation of Phospholipase D2:  Selective Inhibition of Mammalian Phospholipase D Isoenzymes by Α- and Β-Synucleins† (1998); Bose, A., Beal, M.F., Mitochondrial dysfunction in Parkinson's disease (2016) J. Neurochem., 139, pp. 216-231
  • Hoyer, W., Antony, T., Cherny, D., Heim, G., Jovin, T.M., Subramaniam, V., Dependence of α- synuclein aggregate morphology on solution conditions (2002) J. Mol. Biol., 322, pp. 383-393
  • Roberti, M.J., Bertoncini, C.W., Klement, R., Jares-Erijman, E.A., Jovin, T.M., Fluorescence imaging of amyloid formation in living cells by a functional, tetracysteine-tagged alpha- synuclein (2007) Br. J. Pharmacol., 4, pp. 345-351
  • Alaimo, A., Gorojod, R.M., Beauquis, J., Muñoz, M.J., Saravia, F., Kotler, M.L., Deregulation of mitochondria-shaping proteins Opa-1 and Drp-1 in manganese-induced apoptosis (2014) PLoS One, 9
  • Boveris, A., Chance, B., The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen (1973) Biochem. J., 134, pp. 707-716. , http://www.ncbi.nlm.nih.gov/pubmed/4749271, (Accessed 25 November 2017)
  • Robinson, K.M., Janes, M.S., Beckman, J.S., The selective detection of mitochondrial superoxide by live cell imaging (2008) Nat. Protoc., 3, pp. 941-947
  • Lotharius, J., Brundin, P., Pathogenesis of Parkinson's disease: dopamine, vesicles and α- synuclein (2002) Nat. Rev. Neurosci., 3, pp. 932-942
  • Cookson, M.R., The biochemistry of Parkinson's disease (2005) Annu. Rev. Biochem., 74, pp. 29-52
  • Ogen-Shtern, N., Ben David, T., Lederkremer, G.Z., Protein aggregation and ER stress (2016) Brain Res., 1648, pp. 658-666
  • Stefanis, L., α-Synuclein in Parkinson's disease (2012) Cold Spring Harb. Perspect. Med, 2
  • Beyer, K., α-Synuclein structure, posttranslational modification and alternative splicing as aggregation enhancers (2006) Acta Neuropathol., 112, pp. 237-251
  • Marmolino, D., Foerch, P., Atienzar, F.A., Staelens, L., Michel, A., Scheller, D., Alpha synuclein dimers and oligomers are increased in overexpressing conditions in vitro and in vivo (2016) Mol. Cell. Neurosci., 71, pp. 92-101
  • Samuel, F., Flavin, W.P., Iqbal, S., Pacelli, C., Sri Renganathan, S.D., Trudeau, L.-E., Campbell, E.M., Tandon, A., Effects of serine 129 phosphorylation on α-synuclein aggregation, membrane association, and internalization (2016) J. Biol. Chem., 291, pp. 4374-4385
  • Michael, J.V., Seung-Jae Lee, Jean-Christophe Rochet, Mark, D.S., Tomas, T.D., Jeffrey, C.K., J. Peter, T.L., Vesicle Permeabilization by Protofibrillar Α- Synuclein:  Implications for the Pathogenesis and Treatment of Parkinson's Disease† (2001); Ghio, S., Kamp, F., Cauchi, R., Giese, A., Vassallo, N., Interaction of α-synuclein with biomembranes in Parkinson's disease —role of cardiolipin (2016) Prog. Lipid Res., 61, pp. 73-82
  • Ostrerova-Golts, N., Petrucelli, L., Hardy, J., Lee, J.M., Farer, M., Wolozin, B., The A53T alpha- synuclein mutation increases iron-dependent aggregation and toxicity (2000) J. Neurosci., 20, pp. 6048-6054
  • Conway, K.A., Rochet, J.C., Bieganski, R.M., Lansbury, P.T., Kinetic stabilization of the alpha- synuclein protofibril by a dopamine-alpha-synuclein adduct (2001) Science, 294, pp. 1346-1349
  • Leong, S.L., Pham, C.L.L., Galatis, D., Fodero-Tavoletti, M.T., Perez, K., Hill, A.F., Masters, C.L., Cappai, R., Formation of dopamine-mediated α-synuclein-soluble oligomers requires methionine oxidation (2009) Free Radic. Biol. Med., 46, pp. 1328-1337
  • Levin, J., Högen, T., Hillmer, A.S., Bader, B., Schmidt, F., Kamp, F., Kretzschmar, H.A., Giese, A., Generation of ferric iron links oxidative stress to α-synuclein oligomer formation (2011) J. Parkinson's Dis., 1, pp. 205-216
  • Giasson, B.I., Duda, J.E., V Murray, I., Chen, Q., Souza, J.M., Hurtig, H.I., Ischiropoulos, H., Lee, V.M., Oxidative damage linked to neurodegeneration by selective alpha- synuclein nitration in synucleinopathy lesions (2000) Science, 290, pp. 985-989. , http://www.ncbi.nlm.nih.gov/pubmed/11062131, (Accessed 9 April 2018)
  • Hodara, R., Norris, E.H., Giasson, B.I., Mishizen-Eberz, A.J., Lynch, D.R., Lee, V.M.-Y., Ischiropoulos, H., Functional consequences of alpha-synuclein tyrosine nitration: diminished binding to lipid vesicles and increased fibril formation (2004) J. Biol. Chem., 279, pp. 47746-47753
  • Souza, J.M., Giasson, B.I., Chen, Q., Lee, V.M., Ischiropoulos, H., Dityrosine cross-linking promotes formation of stable alpha -synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies (2000) J. Biol. Chem., 275, pp. 18344-18349
  • Lee, H.-J., Shin, S.Y., Choi, C., Lee, Y.H., Lee, S.-J., Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors (2002) J. Biol. Chem., 277, pp. 5411-5417
  • Betarbet, R., Canet-Aviles, R.M., Sherer, T.B., Mastroberardino, P.G., McLendon, C., Kim, J.-H., Lund, S., Greenamyre, J.T., Intersecting pathways to neurodegeneration in Parkinson's disease: effects of the pesticide rotenone on DJ-1, α-synuclein, and the ubiquitin– proteasome system (2006) Neurobiol. Dis., 22, pp. 404-420
  • Mirzaei, H., Schieler, J.L., Rochet, J.-C., Regnier, F., Identification of rotenone-induced modifications in alpha-synuclein using affinity pull-down and tandem mass spectrometry (2006) Anal. Chem., 78, pp. 2422-2431
  • Qin, Z., Hu, D., Han, S., Reaney, S.H., Di Monte, D.A., Fink, A.L., Effect of 4-hydroxy-2-nonenal modification on alpha-synuclein aggregation (2007) J. Biol. Chem., 282, pp. 5862-5870
  • Barrett, P.J., Timothy Greenamyre, J., Post-translational modification of α-synuclein in Parkinson׳s disease (2015) Brain Res., 1628, pp. 247-253
  • Reeve, A.K., Park, T.-K., Jaros, E., Campbell, G.R., Lax, N.Z., Hepplewhite, P.D., Krishnan, K.J., Turnbull, D.M., Relationship between mitochondria and α- synuclein (2012) Arch. Neurol., 69, p. 385
  • Lee, V.M.-Y., Trojanowski, J.Q., Mechanisms of Parkinson's disease linked to pathological alpha-synuclein: new targets for drug discovery (2006) Neuron, 52, pp. 33-38
  • Cassina, A., Radi, R., Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport (1996) Arch. Biochem. Biophys., 328, pp. 309-316
  • Banerjee, K., Sinha, M., Pham, C.L.L., Jana, S., Chanda, D., Cappai, R., Chakrabarti, S., α-Synuclein induced membrane depolarization and loss of phosphorylation capacity of isolated rat brain mitochondria: implications in Parkinson's disease (2010) FEBS Lett., 584, pp. 1571-1576
  • Antico Arciuch, V.G., Galli, S., Franco, M.C., Lam, P.Y., Cadenas, E., Carreras, M.C., Poderoso, J.J., Akt1 intramitochondrial cycling is a crucial step in the redox modulation of cell cycle progression (2009) PLoS One, 4, p. e7523
  • Grecco, P.I.H., Hernan, E., Bastiaens, Imaging protein states in cells (2010) Live Cells, pp. 95-117
  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Cardona, A., Fiji: an open-source platform for biological-image analysis (2012) Br. J. Pharmacol., 9, pp. 676-682
  • Beach, T.G., White, C.L., Hamilton, R.L., Duda, J.E., Iwatsubo, T., Dickson, D.W., Leverenz, J.B., Adler, C.H., Evaluation of alpha- synuclein immunohistochemical methods used by invited experts (2008) Acta Neuropathol., 116, pp. 277-288
  • Gnaiger, E., Mitochondrial pathways and respiratory control (2007) Textb. Mitochondrial Physiol., OROBOROS MiP- Net, Innsbruck, pp. 1-95
  • Vanasco, V., Magnani, N.D., Cimolai, M.C., Valdez, L.B., Evelson, P., Boveris, A., Alvarez, S., Endotoxemia impairs heart mitochondrial function by decreasing electron transfer, ATP synthesis and ATP content without affecting membrane potential (2012) J. Bioenerg. Biomembr., 44, pp. 243-252
  • Vives-Bauza, C., Yang, L., Manfredi, G., Assay of mitochondrial ATP synthesis in animal cells and tissues (2007) Meth. Cell Biol., pp. 155-171

Citas:

---------- APA ----------
Martínez, J.H., Fuentes, F., Vanasco, V., Alvarez, S., Alaimo, A., Cassina, A., Coluccio Leskow, F.,..., Velazquez, F. (2018) . Alpha-synuclein mitochondrial interaction leads to irreversible translocation and complex I impairment. Archives of Biochemistry and Biophysics, 651, 1-12.
http://dx.doi.org/10.1016/j.abb.2018.04.018
---------- CHICAGO ----------
Martínez, J.H., Fuentes, F., Vanasco, V., Alvarez, S., Alaimo, A., Cassina, A., et al. "Alpha-synuclein mitochondrial interaction leads to irreversible translocation and complex I impairment" . Archives of Biochemistry and Biophysics 651 (2018) : 1-12.
http://dx.doi.org/10.1016/j.abb.2018.04.018
---------- MLA ----------
Martínez, J.H., Fuentes, F., Vanasco, V., Alvarez, S., Alaimo, A., Cassina, A., et al. "Alpha-synuclein mitochondrial interaction leads to irreversible translocation and complex I impairment" . Archives of Biochemistry and Biophysics, vol. 651, 2018, pp. 1-12.
http://dx.doi.org/10.1016/j.abb.2018.04.018
---------- VANCOUVER ----------
Martínez, J.H., Fuentes, F., Vanasco, V., Alvarez, S., Alaimo, A., Cassina, A., et al. Alpha-synuclein mitochondrial interaction leads to irreversible translocation and complex I impairment. Arch. Biochem. Biophys. 2018;651:1-12.
http://dx.doi.org/10.1016/j.abb.2018.04.018