Artículo

Jorge, S.E.; Bringas, M.; Petruk, A.A.; Arrar, M.; Marti, M.A.; Skaf, M.S.; Costa, F.F.; Capece, L.; Sonati, M.F.; Estrin, D. "Understanding the molecular basis of the high oxygen affinity variant human hemoglobin Coimbra" (2018) Archives of Biochemistry and Biophysics. 637:73-78
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Human hemoglobin (Hb) Coimbra (βAsp99Glu) is one of the seven βAsp99 Hb variants described to date. All βAsp99 substitutions result in increased affinity for O2 and decreased heme-heme cooperativity and their carriers are clinically characterized by erythrocytocis, caused by tissue hypoxia. Since βAsp99 plays an important role in the allosteric α1β2 interface and the mutation in Hb Coimbra only represents the insertion of a CH2 group in this interface, the present study of Hb Coimbra is important for a better understanding of the global impact of small modifications in this allosteric interface. We carried out functional, kinetic and dynamic characterization of this hemoglobin, focusing on the interpretation of these results in the context of a growth of the position 99 side chain length in the α1β2 interface. Oxygen affinity was evaluated by measuring p50 values in distinct pHs (Bohr effect), and the heme-heme cooperativity was analyzed by determining the Hill coefficient (n), in addition to the effect of the allosteric effectors inositol hexaphosphate (IHP) and 2,3-bisphosphoglyceric acid (2,3-BPG). Computer simulations revealed a stabilization of the R state in the Coimbra variant with respect to the wild type, and consistently, the T-to-R quaternary transition was observed on the nanosecond time scale of classical molecular dynamics simulations. © 2017 Elsevier Inc.

Registro:

Documento: Artículo
Título:Understanding the molecular basis of the high oxygen affinity variant human hemoglobin Coimbra
Autor:Jorge, S.E.; Bringas, M.; Petruk, A.A.; Arrar, M.; Marti, M.A.; Skaf, M.S.; Costa, F.F.; Capece, L.; Sonati, M.F.; Estrin, D.
Filiación:Department of Clinical Pathology, School of Medical Sciences, University of Campinas (Unicamp), Campinas, SP, Brazil
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorganica, Analítica y Química-Física, Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Quımica Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, Brazil
Hematology and Hemotherapy Center, University of Campinas (Unicamp), Campinas, SP, Brazil
Palabras clave:Allostery; Hb Coimbra; Hemoglobin variant; Oxygen affinity; Polycythemia; hemoglobin coimbra; hemoglobin hotel dieu; hemoglobin kempsey; hemoglobin radcliffe; hemoglobin variant; hemoglobin yakima; hemoglobin ypsilanti; oxygen; phytic acid; unclassified drug; 2,3 diphosphoglyceric acid; heme; hemoglobin Coimbra; hemoglobin variant; oxygen; phytic acid; allosterism; Article; blood viscosity; computer simulation; conformational transition; controlled study; dissociation rate constant; erythrocytosis; hemolysate; human; hypoxemia; molecular dynamics; molecular probe; oximetry; oxygen affinity; priority journal; protein function; protein modification; chemistry; genetics; in vitro study; kinetics; metabolism; molecular model; protein domain; protein quaternary structure; 2,3-Diphosphoglycerate; Allosteric Regulation; Heme; Hemoglobins, Abnormal; Humans; In Vitro Techniques; Kinetics; Models, Molecular; Molecular Dynamics Simulation; Oxygen; Phytic Acid; Protein Interaction Domains and Motifs; Protein Structure, Quaternary
Año:2018
Volumen:637
Página de inicio:73
Página de fin:78
DOI: http://dx.doi.org/10.1016/j.abb.2017.11.010
Título revista:Archives of Biochemistry and Biophysics
Título revista abreviado:Arch. Biochem. Biophys.
ISSN:00039861
CODEN:ABBIA
CAS:oxygen, 7782-44-7; phytic acid, 83-86-3; 2,3 diphosphoglyceric acid, 138-81-8; heme, 14875-96-8; 2,3-Diphosphoglycerate; Heme; hemoglobin Coimbra; Hemoglobins, Abnormal; Oxygen; Phytic Acid
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00039861_v637_n_p73_Jorge

Referencias:

  • Hoffbrand, V., Pettit, J.E., Moss, P.A.H., (2000) Essential Haematology, p. 437. , 4.ed Blackwell Science London, Edinburgh, Boston
  • Antonini, E., Brunori, M., (1971) Hemoglobin and Myoglobin in Their Reaction with Ligands, p. 435. , North-Holland Publishing Company Amsterdam (v.21)
  • Esquerra, R.M., Bibi, B.M., Tipgunlakant, P., Birukou, I., Soman, J., Olson, J.S., Kliger, D.S., Goldbeck, R.A., Role of heme pocket water in allosteric regulation of ligand reactivity in human hemoglobin (2016) Biochemistry, 55 (29), pp. 4005-4017
  • Kim, H.-W., Shen, T.-J., Sun, D.P., Ho, N.T., Madrid, M., Tam, M.F., Zou, M., Ho, C., Restoring allosterism with compensatory mutations in hemoglobin (1994) Proc. Natl. Acad. Sci., 91 (24), pp. 11547-11551
  • (2017), http://globin.cse.psu.edu, Globin Gene Server Home Page. Last accessed on 21 June; Wajcman, H., Galacteros, F., Hemoglobins with high oxygen affinity leading to erythrocytosis (2005) new Var. new concepts, Hemoglobin, 29 (2), pp. 91-106
  • Gordeuk, V.R., Stockton, D.W., Prchal, J.T., Congenital polycythemias/erythrocytoses (2005) Haematologica, 90 (1), pp. 109-116
  • Fernández, F.G., De Francisco, A., Gomez, A.C., Ruiz, J., Rodrigo, E., Arias, M., The phenomenon of hemoglobin variability with erythropoiesis stimulating agents in renal transplant patients (2009) Clin. Nephrol., 72 (4), pp. 292-297
  • Eaton, W.A., Henry, E.R., Hofrichter, J., Mozzarelli, A., Is cooperative oxygen binding by hemoglobin really understood? (1999) Nat. Struct. Mol. Biol., 6 (4), pp. 351-358
  • Eaton, W.A., Henry, E.R., Hofrichter, J., Bettati, S., Viappiani, C., Mozzarelli, A., Evolution of allosteric models for hemoglobin (2007) IUBMB life, 59 (8-9), pp. 586-599
  • Rossi-Fanelli, A., Antonini, E., Studies on the oxygen and carbon monoxide equilibria of human myoglobin (1958) Archives Biochem. Biophysics, 77 (2), pp. 478-492
  • Binotti, I., Giovenco, S., Giardina, B., Antonini, E., Brunori, M., Wyman, J., Studies on the functional properties of fish hemoglobins: Ii. the oxygen equilibrium of the isolated hemoglobin components from trout blood (1971) Archives Biochem. Biophysics, 142 (1), pp. 274-280
  • Vandegriff, K., Olson, J., The kinetics of O2 release by human red blood cells in the presence of external sodium dithionite (1984) J. Biol. Chem., 259 (20), pp. 12609-12618
  • Harrington, J.P., Elbaum, D., Bookchin, R.M., Wittenberg, J.B., Nagel, R.L., Ligand kinetics of hemoglobin s containing erythrocytes (1977) Proceedings of the National Academy of Sciences, 74 (1), pp. 203-206
  • Brittain, T., Simpson, R., An analysis of the stopped-flow kinetics of gaseous ligand uptake and release by adult mouse erythrocytes (1989) Biochem. J., 260 (1), pp. 171-176
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J.L., Dror, R.O., Shaw, D.E., Improved side-chain torsion potentials for the amber ff99sb protein force field (2010) Proteins Struct. Funct. Bioinforma., 78 (8), pp. 1950-1958
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J. Chem. Phys., 79 (2), pp. 926-935
  • Marti, M.A., Crespo, A., Capece, L., Boechi, L., Bikiel, D.E., Scherlis, D.A., Estrin, D.A., Dioxygen affinity in heme proteins investigated by computer simulation (2006) J. Inorg. Biochem., 100 (4), pp. 761-770
  • Bidon-Chanal, A., Martí, M., Estrin, D., Luque, F., Exploring the nitric oxide detoxification mechanism of mycobacterium tuberculosis truncated haemoglobin n (2009) SelfOrganization of Molecular Systems, pp. 33-47. , Springer
  • Nadra, A.D., Martí, M.A., Pesce, A., Bolognesi, M., Estrin, D.A., Exploring the molecular basis of heme coordination in human neuroglobin (2008) Proteins Struct. Funct. Bioinforma., 71 (2), pp. 695-705
  • Capece, L., Estrin, D.A., Marti, M.A., Dynamical characterization of the heme no oxygen binding (hnox) domain (2008) Insight into soluble guanylate cyclase allosteric transit. Biochem., 47 (36), pp. 9416-9427
  • Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J., Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes (1977) J. Comput. Phys., 23 (3), pp. 327-341
  • Berendsen, H.J., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J., Molecular dynamics with coupling to an external bath (1984) J. Chem. Phys., 81 (8), pp. 3684-3690
  • Hub, J.S., Kubitzki, M.B., De Groot, B.L., Spontaneous quaternary and tertiary T-R transitions of human hemoglobin in molecular dynamics simulation (2010) PLoS Comput. Biol., 6 (5)
  • Shanaan, B., Structure of human oxyhaemoglobin at 2.1 A resolution (1983) J. Mol. Biol., 171, pp. 31-59
  • Fermi, G., Perutz, M., Shaanan, B., Fourme, R., The crystal structure of human deoxyhaemoglobin at 1.74 A resolution (1984) J. Mol. Biol., 175 (2), pp. 159-174
  • Amadei, A., Linssen, A., Berendsen, H.J., Essential dynamics of proteins (1993) Proteins Struct. Funct. Bioinforma., 17 (4), pp. 412-425
  • Kirkwood, J.G., Statistical mechanics of fluid mixtures (1935) J. Chem. Phys., 3 (5), pp. 300-313
  • Zwanzig, R.W., High-temperature equation of state by a perturbation method. i. nonpolar gases (1954) J. Chem. Phys., 22 (8), pp. 1420-1426
  • Kaus, J.W., Arrar, M., McCammon, J.A., Accelerated adaptive integration method (2014) J. Phys. Chem. B, 118 (19), pp. 5109-5118
  • Shirts, M.R., Chodera, J.D., Statistically optimal analysis of samples from multiple equilibrium states (2008) J. Chem. Phys., 129 (12), p. 124105
  • Edalji, R., Benesch, R.E., Benesch, R., Binding of inositol hexaphosphate to deoxyhemoglobin (1976) J. Biol. Chem., 251 (23), pp. 7720-7721
  • Fischer, S., Olsen, K.W., Nam, K., Karplus, M., Unsuspected pathway of the allosteric transition in hemoglobin (2011) Proc. Natl. Acad. Sci., 108 (14), pp. 5608-5613

Citas:

---------- APA ----------
Jorge, S.E., Bringas, M., Petruk, A.A., Arrar, M., Marti, M.A., Skaf, M.S., Costa, F.F.,..., Estrin, D. (2018) . Understanding the molecular basis of the high oxygen affinity variant human hemoglobin Coimbra. Archives of Biochemistry and Biophysics, 637, 73-78.
http://dx.doi.org/10.1016/j.abb.2017.11.010
---------- CHICAGO ----------
Jorge, S.E., Bringas, M., Petruk, A.A., Arrar, M., Marti, M.A., Skaf, M.S., et al. "Understanding the molecular basis of the high oxygen affinity variant human hemoglobin Coimbra" . Archives of Biochemistry and Biophysics 637 (2018) : 73-78.
http://dx.doi.org/10.1016/j.abb.2017.11.010
---------- MLA ----------
Jorge, S.E., Bringas, M., Petruk, A.A., Arrar, M., Marti, M.A., Skaf, M.S., et al. "Understanding the molecular basis of the high oxygen affinity variant human hemoglobin Coimbra" . Archives of Biochemistry and Biophysics, vol. 637, 2018, pp. 73-78.
http://dx.doi.org/10.1016/j.abb.2017.11.010
---------- VANCOUVER ----------
Jorge, S.E., Bringas, M., Petruk, A.A., Arrar, M., Marti, M.A., Skaf, M.S., et al. Understanding the molecular basis of the high oxygen affinity variant human hemoglobin Coimbra. Arch. Biochem. Biophys. 2018;637:73-78.
http://dx.doi.org/10.1016/j.abb.2017.11.010