Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Kinetic constants for peptide phosphorylation by the catalytic subunit of the dimorphic fungus Mucor rouxii protein kinase A were determined using 13 peptides derived from the peptide containing the basic consensus sequence RRASVA, plus kemptide, S6 peptide, and protamine. As a whole, although with a greater K(m), the order of preference of the peptides by the M. rouxii catalytic subunit was similar to the one displayed by mammalian protein kinase A. Particularly significant is the replacement of serine by threonine in the basic peptide RRATVA, which impaired its role as a substrate of M. rouxii catalytic subunit. Mucor rouxii protein kinase A is a good model in which to study the mechanism of activation since cAMP alone is not enough to promote activation and dissociation. Four peptides were selected for the study of holoenzyme activation under conditions in which the enzymatic activity was not proportional to the holoenzyme concentration: RRASVA, RRRRASVA, KRRRLSSRA (S6 peptide), and LRRASLG (kemptide); protamine was used as reference. Differential activation degree was observed depending on the peptide used and on cAMP concentration. Ratios of activity between different substrates displayed by the holoenzyme under the above conditions did not reflect the one expected for the free catalytic subunit. The degree of inhibition of the holoenzyme activity by an active peptide derived from the thermostable protein kinase inhibitor was dependent on the substrate used and on the holoenzyme concentration, while it was found to be independent of these two parameters for free catalytic subunit. Polycation modulation of holoenzyme activation by cAMP was also dependent on the polycation itself and on the peptide used as substrate. The observed kinetic differences between holoenzyme and free catalytic subunit were decreased or almost abolished when working at low enzyme or at high cAMP concentrations. Two hypotheses compatible with the results are discussed: Substrate participation in the dissociation process and/or holoenzyme activation without dissociation. (C) 2000 Academic Press.

Registro:

Documento: Artículo
Título:Mechanism of activation of camp-dependent protein kinase: In mucor rouxii the apparent specific activity of the camp-activated holoenzyme is different than that of its free catalytic subunit
Autor:Zaremberg, V.; Donella-Deana, A.; Moreno, S.
Filiación:Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires, Buenos Aires, Argentina
Dipartimento Di Chimica Biologica, Universita De Gli Studi Di Padova, Padova, Italy
Palabras clave:CAMP activation; Catalytic subunit; Mucor rouxii; Protein kinase A; Substrate; cyclic AMP dependent protein kinase; polycation; animal cell; article; binding affinity; catalysis; concentration response; controlled study; enzyme activation; enzyme activity; enzyme inhibition; kinetics; nonhuman; phosphorylation; priority journal
Año:2000
Volumen:381
Número:1
Página de inicio:74
Página de fin:82
DOI: http://dx.doi.org/10.1006/abbi.2000.1948
Título revista:Archives of Biochemistry and Biophysics
Título revista abreviado:Arch. Biochem. Biophys.
ISSN:00039861
CODEN:ABBIA
CAS:cyclic AMP dependent protein kinase
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00039861_v381_n1_p74_Zaremberg

Referencias:

  • Cox, S., Taylor, S.S., (1994) J. Biol. Chem., 269, p. 22
  • Su, Y., Dostmann, R.G., Herberg, F.W., Durick, K., Xuong, N.-H., Ten Eyck, L., Taylor, S.S., Varughese, K.I., (1995) Science, 269, pp. 807-813
  • Gibson, R.M., Ji-Buechler, Y., Taylor, S.S., (1997) J. Biol. Chem., 272, p. 16
  • Zhao, J., Hoye, E., Boylan, S., Walsh, D.A., Trewhella, J., (1998) J. Biol. Chem., 273, p. 30
  • Doskeland, S.O., Maronde, E., Gjersten, B.T., (1993) Biochem. Biophys. Acta, 1178, pp. 249-258
  • Francis, S.H., Corbin, J.D., (1994) Annu. Rev. Physiol., 56, pp. 237-272
  • Moreno, S., Pastori, R., Passeron, S., (1983) Mol. Cell. Biochem., 52, pp. 13-16
  • Connelly, P.A., Hastings, T.G., Reimann, E.M., (1986) J. Biol. Chem., 261, pp. 2325-2330
  • Yang, S., Fletcher, W.H., Johnson, D.A., (1995) Biochemistry, 34, pp. 6267-6271
  • Cho-Chung, Y.S., Clair, T., (1993) Pharm. Ther., 60, pp. 265-288
  • Walsh, D., Patten, S., (1994) FASEB J., 8, pp. 1227-1236
  • Tasken, K., Skalhegg, B.S., Tasken, K.A., Solberg, R., Knutsen, H.K., Levy, F.O., Sandberg, M., Jahnsen, T., (1997) Adv. Second Phosphoprotein Res., 31, pp. 191-204
  • Zaremberg, V., Moreno, S., (1996) Eur. J. Biochem., 237, pp. 136-142
  • Pastori, R., Kerner, N., Moreno, S., Passeron, S., (1981) Biochem. Biophys. Res. Commun., 101, pp. 663-671
  • Guthmann, M., Pastori, R., Moreno, S., (1990) Cell. Signaling, 2, pp. 395-402
  • Haidle, C.W., Storck, R., (1966) J. Bacteriol., 92, pp. 1236-1244
  • Bartnicki-Garcia, S., Nickerson, W., (1962) J. Bacteriol., 83, pp. 841-858
  • Paveto, C., Passeron, S., Corbin, J.D., Moreno, S., (1989) Eur. J. Biochem., 179, pp. 429-434
  • Moreno, S., Passeron, S., (1980) Arch. Biochem. Biophys., 199, pp. 321-330
  • Roskoski, R., (1983) Methods Enzymol., 99, pp. 3-6
  • Donella-Deana, A., Lavoinne, A., Marin, O., Pinna, L.A., Cohen, P., (1993) Biochim. Biophys. Acta, 1178, pp. 189-193
  • Glass, D.B., Feller, M.J., Levin, L.R., Walsh, D.A., (1992) Biochemistry, 31, pp. 1728-1734
  • Kennelly, P.J., Krebs, E.G., (1991) J. Biol. Chem., 266, p. 15
  • Denis, C.L., Kemp, B.E., Zoller, M.J., (1991) J. Biol. Chem., 266, p. 17
  • Ochatt, C.M., Ulloa, R.M., Torres, H.N., Tellez-Inon, M.T., (1993) Mol. Biochem. Parasitol., 57, pp. 73-81
  • Zelada, A., Passeron, S., Lopes Gomes, S., Cantore, M.L., (1998) Eur. J. Biochem., 252, pp. 245-252
  • Johnson, D.A., Leathers, V.L., Martinez, A.M., Walsh, D.A., Fletcher, W.H., (1993) Biochemistry, 32, pp. 6402-6410
  • Wang, Y., Scott, J.D., Mc.Knight, G.S., Krebs, E.G., (1991) Proc. Natl. Acad. Sci. USA, 88, pp. 2446-2450
  • Gibson, R.M., Taylor, S.S., (1997) J. Biol. Chem., 272, pp. 31998-32005
  • Dekker, L.V., Parker, P.J., (1994) Trends Biochem. Sci., 19, pp. 73-77
  • Pereyra, E., Zaremberg, V., Moreno, S., (1992) Exp. Mycol., 16, pp. 93-101

Citas:

---------- APA ----------
Zaremberg, V., Donella-Deana, A. & Moreno, S. (2000) . Mechanism of activation of camp-dependent protein kinase: In mucor rouxii the apparent specific activity of the camp-activated holoenzyme is different than that of its free catalytic subunit. Archives of Biochemistry and Biophysics, 381(1), 74-82.
http://dx.doi.org/10.1006/abbi.2000.1948
---------- CHICAGO ----------
Zaremberg, V., Donella-Deana, A., Moreno, S. "Mechanism of activation of camp-dependent protein kinase: In mucor rouxii the apparent specific activity of the camp-activated holoenzyme is different than that of its free catalytic subunit" . Archives of Biochemistry and Biophysics 381, no. 1 (2000) : 74-82.
http://dx.doi.org/10.1006/abbi.2000.1948
---------- MLA ----------
Zaremberg, V., Donella-Deana, A., Moreno, S. "Mechanism of activation of camp-dependent protein kinase: In mucor rouxii the apparent specific activity of the camp-activated holoenzyme is different than that of its free catalytic subunit" . Archives of Biochemistry and Biophysics, vol. 381, no. 1, 2000, pp. 74-82.
http://dx.doi.org/10.1006/abbi.2000.1948
---------- VANCOUVER ----------
Zaremberg, V., Donella-Deana, A., Moreno, S. Mechanism of activation of camp-dependent protein kinase: In mucor rouxii the apparent specific activity of the camp-activated holoenzyme is different than that of its free catalytic subunit. Arch. Biochem. Biophys. 2000;381(1):74-82.
http://dx.doi.org/10.1006/abbi.2000.1948