Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The interaction of 4-hydroxy-3-methoxybenzaldehyde (vanillin) and Hylon VII due to the formation of an inclusion complex is studied using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and circular dichroism (CD). The results confirm the close interaction among the different functional groups of vanillin and its host. In addition, a second case study was carried out with an amylose from a different source (100% amylose [APT III]). As a result, remarkable differences were found in the vanillin complexation capability of this amylose, which is only shown in solution by circular dichroism spectroscopy studies through a clear Cotton effect. This finding confirms the value of using CD studies, which shows that, depending on the amylose source, inclusion complexes can be found in solution, or both in solution and the coexisting precipitates, as shown using other techniques, such as X-ray diffraction (XRD) or differential scanning calorimetry (DSC). Moreover, solubility assays and complexation of both starches with iodine and subsequent absorption spectroscopy studies gives more information regarding the possible source of the starch encapsulation capability. Thus, Hylon VII shows higher capacity as vanillin encapsulant than APT III, showing the formation of inclusion complexes both in solution and solid phase, whereas APT III complexes are only perceivable in solution. © 2013 Society for Applied Spectroscopy.

Registro:

Documento: Artículo
Título:Host-guest molecular interactions in vanillin/amylose inclusion complexes
Autor:Rodríguez, S.D.; Bernik, D.L.
Filiación:Instituto de Química Física de Materiales, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Amylose; Circular dichroism (CD); Differential scanning calorimetry (DSC); Fourier transformed infrared spectroscopy (FT-IR); Inclusion complex; Amylose; Cotton effects; Encapsulants; Fourier transform infra red (FTIR) spectroscopy; Fourier transformed infrared spectroscopy; Inclusion complex; Solid-phase; Starch encapsulations; Circular dichroism spectroscopy; Cyclodextrins; Dichroism; Fourier transform infrared spectroscopy; Functional groups; Starch; X ray diffraction; Differential scanning calorimetry; amylose; benzaldehyde derivative; vanillin; chemistry; circular dichroism; conference paper; differential scanning calorimetry; infrared spectroscopy; methodology; molecular dynamics; Amylose; Benzaldehydes; Calorimetry, Differential Scanning; Circular Dichroism; Molecular Dynamics Simulation; Spectroscopy, Fourier Transform Infrared
Año:2013
Volumen:67
Número:8
Página de inicio:884
Página de fin:891
DOI: http://dx.doi.org/10.1366/12-06981
Título revista:Applied Spectroscopy
Título revista abreviado:Appl Spectrosc
ISSN:00037028
CODEN:APSPA
CAS:amylose, 9005-82-7; vanillin, 121-33-5; Amylose, 9005-82-7; Benzaldehydes; vanillin, CHI530446X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00037028_v67_n8_p884_Rodriguez

Referencias:

  • Tester, R.F., Karkalas, J., Qi, X., Starch-composition, fine structure, and architecture (2004) J. Cereal Sci., 39 (2), pp. 151-165
  • Itthisoponkul, T., Mitchell, J.R., Taylor, A.J., Farhat, I.A., Inclusion complexes of tapioca starch with flavour compounds (2007) Carbohydr. Poly., 69 (1), pp. 106-115
  • Yang, Y., Gu, Z., Zhang, G., Delivery of bioactive conjugated linoleic acid with self-assembled amylose-CLA complex (2009) J. Agric. Food Chem., 57 (15), pp. 7125-7130
  • Tapanapunnitikul, O., Chaiseri, S., Peterson, D.G., Thompson, D.B., Water solubility of flavor compounds influences formation of flavor inclusion complexes from dispersed high-amylose maize starch (2008) J. Agric. Food Chem., 56 (1), pp. 220-226
  • Wulff, G., Avgenaki, G., Guzmann, M.S.P., Molecular encapsulation of flavours as helical inclusion complexes of amylose (2005) J. Cereal Sci., 41 (3), pp. 239-249
  • Nuessli, J., Sigg, B., Conde-Petit, B., Escher, F., Characterization of amylose-flavour complexes by DSC and X-ray diffraction (1997) Food Hydrocoll., 11 (1), pp. 27-34
  • Wulff, G., Kubik, S., Helical amylose complexes with organic complexands, 1. Microcalorimetric and circular dichroitic investigations (1992) Die Makromolekulare Chemie, 193 (5), pp. 1071-1080
  • Tai, A., Sawano, T., Yazama, F., Ito, H., Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays (2001) Biochim. Biophys. Acta., 1810 (2), pp. 170-177
  • Rodríguez, S.D., Bernik, D.L., Méreau, R., Castet, F., Champagne, B., Botek, E., Amylose-vanillin complexation assessed by a joint experimental and theoretical analysis (2011) J. Phys. Chem. C, 115 (47), pp. 23315-23322
  • Kizil, R., Irudayaraj, J., Seetharaman, K., Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy (2002) J. Agric. Food Chem., 50 (14), pp. 3912-3918
  • Balachandran, V., Parimala, K., Vanillin and isovanillin: Comparative vibrational spectroscopic studies, conformational stability and NLO properties by density functional theory calculations (2012) Spectrochim. Acta A, 95, pp. 354-368
  • Gunasekaran, S., Ponnusamy, S., Vibrational spectra and normal coordinate analysis on an organic non-linear optical crystal-3- methoxy-4-hydroxy benzaldehyde (2005) Indian J. Pure Appl. Phys., 43 (11), pp. 838-843
  • Ehrhardt, S.M., (1984) An Investigation on the Vibrational Spectra of Lignin Model Compounds, , [Ph.D. Thesis]. Atlanta, Georgia: Georgia Institute of Technology
  • Yadav, B.S., Tyagi, S.K., Seema, E., Study of vibrational spectra of 4- methyl-3-nitrobenzaldehyde (2006) Indian J. Pure Appl. Phys., 44 (9), pp. 644-648
  • Jouquand, C., Ducruet, V., Le Bail, P., Formation of amylose complexes with C6-aroma compounds in starch dispersions and its impact on retention (2006) Food Chem, 96 (3), pp. 461-470
  • Heinemann, C., Conde-Petit, B., Nuessli, J., Escher, F., Evidence of starch inclusion complexation with lactones (2001) J. Agric. Food Chem., 49 (3), pp. 1370-1376
  • Nuessli, J., Putaux, J.L., Le Bail, P., Buléon, A., Crystal structure of amylose complexes with small ligands (2003) Int. J. Biol. Mol., 33 (4-5), pp. 227-234
  • Zhang, B., Huang, Q., Luo, F., Fu, X., Structural characterizations and digestibility of debranched high-amylose maize starch complexed with lauric acid (2012) Food Hydrocoll, 28 (1), pp. 174-181
  • Lay Ma, U.V., Flores, J.D., Ziegler, G.R., Formation of inclusion complexes of starch with fatty acid esters of bioactive compounds (2011) Carbohydrate Polym., 83 (4), pp. 1869-1878
  • Heussen, P., (2011) Practical Food Applications of Differential Scanning Calorimetry (DSC), , http://www.perkinelmer.com/CMSResources/Images/44- 129725APP_DSC_Food_Applications.pdf, Application Note. Vlaardinger, the Netherlands: Unilever Research and Development, [accessed Nov 5 2012]
  • Roy, S., Riga, A.T., Alexander, K.S., Experimental design aids the development of a differential scanning calorimetry standard test procedure for pharmaceuticals (2002) Thermochim. Acta., 392-393, pp. 399-404
  • Gilbert, G.A., Spragg, S.P., Iodimetric determination of amylose (1964) Methods of Carbohydrate Chemistry, 4, pp. 168-169. , R.L. Whistler, editor. New York: Academic Press
  • Conde-Petit, B., Escher, F., Nuessli, J., Structural features of starch-flavor complexation in food model systems (2006) Trends Food Sci. Technol., 17 (5), pp. 227-235
  • Rajendiran, N., Balasubramanian, T., Intramolecular charge transfer of 4- hydroxy-3-methoxybenzaldehyde (2008) Spectrochim. Acta A, 69, pp. 822-829
  • Schofield, W.C.E., Badyal, J.P.S., Controlled fragrant molecule release from surface-tethered cyclodextrin host-guest inclusion complexes (2011) Appl. Mater. Interfaces, 3 (6), pp. 2051-2056
  • Sajan, D., Erdogdu, Y., Kuruvilla, T., Joe, I.H., Vibrational spectra and first-order molecular hyperpolarizabilities of p-Hydroxybenzaldehyde dimer (2010) J. Mol. Structure, (983), pp. 12-21
  • Karathanos, V.T., Mourtzinos, I., Yannakopoulou, K., Andrikopoulos, N.K., Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin (2007) Food Chem., 101 (2), pp. 652-658
  • Ficarra, R., Tommasini, S., Raneri, D., Calabró, M.L., Di Bella, M.R., Rustichelli, C., Gamberini, M.C., Ficarra, P., Study of flavonoids/β-cyclodextrins inclusion complexes by NMR, FT-IR, DSC, X-ray investigation (2002) J. Pharm. Biomed. Anal., 29 (6), pp. 1005-1014
  • Wulff, G., Steinert, A., Holler, O., Modification of amylose and investigation of its inclusion behavior (1998) Carbohydrate Res., 307 (1-2), pp. 19-31

Citas:

---------- APA ----------
Rodríguez, S.D. & Bernik, D.L. (2013) . Host-guest molecular interactions in vanillin/amylose inclusion complexes. Applied Spectroscopy, 67(8), 884-891.
http://dx.doi.org/10.1366/12-06981
---------- CHICAGO ----------
Rodríguez, S.D., Bernik, D.L. "Host-guest molecular interactions in vanillin/amylose inclusion complexes" . Applied Spectroscopy 67, no. 8 (2013) : 884-891.
http://dx.doi.org/10.1366/12-06981
---------- MLA ----------
Rodríguez, S.D., Bernik, D.L. "Host-guest molecular interactions in vanillin/amylose inclusion complexes" . Applied Spectroscopy, vol. 67, no. 8, 2013, pp. 884-891.
http://dx.doi.org/10.1366/12-06981
---------- VANCOUVER ----------
Rodríguez, S.D., Bernik, D.L. Host-guest molecular interactions in vanillin/amylose inclusion complexes. Appl Spectrosc. 2013;67(8):884-891.
http://dx.doi.org/10.1366/12-06981